A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This co-immunoprecipitation protocol allows to study the interaction between the influenza A virus nucleoprotein and the antiviral Mx1 protein in human cells. The protocol emphasizes the importance of N-ethylmaleimide for successful co-immunoprecipitation of Mx1 and influenza A virus nucleoprotein.
Studying the interaction between proteins is key in understanding their function(s). A very powerful method that is frequently used to study interactions of proteins with other macromolecules in a complex sample is called co-immunoprecipitation. The described co-immunoprecipitation protocol allows to demonstrate and further investigate the interaction between the antiviral myxovirus resistance protein 1 (Mx1) and one of its viral targets, the influenza A virus nucleoprotein (NP). The protocol starts with transfected mammalian cells, but it is also possible to use influenza A virus infected cells as starting material. After cell lysis, the viral NP protein is pulled-down with a specific antibody and the resulting immune-complexes are precipitated with protein G beads. The successful pull-down of NP and the co-immunoprecipitation of the antiviral Mx1 protein are subsequently revealed by western blotting. A prerequisite for successful co-immunoprecipitation of Mx1 with NP is the presence of N-ethylmaleimide (NEM) in the cell lysis buffer. NEM alkylates free thiol groups. Presumably this reaction stabilizes the weak and/or transient NP–Mx1 interaction by preserving a specific conformation of Mx1, its viral target or an unknown third component. An important limitation of co-immunoprecipitation experiments is the inadvertent pull-down of contaminating proteins, caused by nonspecific binding of proteins to the protein G beads or antibodies. Therefore, it is very important to include control settings to exclude false positive results. The described co-immunoprecipitation protocol can be used to study the interaction of Mx proteins from different vertebrate species with viral proteins, any pair of proteins, or of a protein with other macromolecules. The beneficial role of NEM to stabilize weak and/or transient interactions needs to be tested for each interaction pair individually.
Myxovirus resistance (Mx) proteins are an important part of the innate immune defense against viral pathogens. These proteins are large dynamin-like GTPases that are induced by type I and type III interferons. The corresponding Mx genes are present in nearly all vertebrates in one or multiple copies and their gene products inhibit a wide range of viruses, including Orthomyxoviridae (e.g., influenza virus), Rhabdoviridae (e.g., vesicular stomatitis virus), Bunyaviridae (e.g., la crosse virus) and Retroviridae (e.g., human immunodeficiency virus-1)1-4. It is unclear how these proteins recognize such a broad array of viruses, without any apparent shared primary sequence motifs in these viruses. Analyzing the interaction of Mx proteins with their viral targets, potentially involving higher order complexes with other host cell factors, will help to understand the molecular mechanisms that have evolved in the arms race between viruses and their hosts.
The interaction between mammalian Mx proteins and viral targets has been studied most extensively for human MxA. Human MxA can inhibit the replication of many viruses, including the orthomyxoviruses influenza A and Thogoto virus. MxA binds the Thogoto virus ribonucleoprotein complexes (vRNPs), thereby preventing their nuclear entry, which results in block of infection5. This interaction between MxA and Thogoto virus vRNPs has been demonstrated with co-sedimentation and co-immunoprecipitation experiments6-9. How Mx proteins hinder influenza A viruses is less clear. One major problem is that it is not straightforward to demonstrate an interaction between an Mx protein and an influenza gene product. One report demonstrated an interaction between human MxA and the NP protein in influenza A virus infected cells10. This interaction could only be shown by co-immunoprecipitation if the cells had been treated with the cross-linking reagent dithiobis (succinimidyl propionate) before lysis, suggesting that the interaction is transient and/or weak. More recent studies have shown that the differential Mx sensitivity of different influenza A strains is determined by the origin of the NP protein11,12. In line with this, influenza A viruses can partly escape from Mx control by mutating specific residues in the NP protein13. This suggests that the main target of influenza A viruses for host Mx is the NP protein, most probably NP assembled in vRNP complexes. However, none of these more recent studies demonstrated an interaction between influenza NP or vRNPs and either human MxA or mouse Mx1.
Recently we showed, for the first time, an interaction between the influenza NP and the mouse Mx1 protein with an optimized co-immunoprecipitation protocol14, which is described here in detail. In general, co-immunoprecipitation is one of the most frequently used biochemical approaches to investigate protein-protein interactions. This technique is often preferred over alternative techniques, e.g., yeast two hybrid, since it allows to investigate protein-protein interactions in their natural environment. Co-immunoprecipitation can be carried out on endogenously expressed proteins if antibodies against the proteins of interest are available. Alternatively, the proteins of interest can be expressed in the cell through transfection or infection and an affinity tag may be used. In addition to the above-mentioned advantages, the described co-immunoprecipitation protocol allows the detection of weak and/or transient protein interactions. The main component in this optimized protocol is the addition of N-ethylmaleimide (NEM) in the cell lysis buffer. NEM is an alkylating reagent that reacts with free thiol groups such as present in cysteines, at a pH of 6.5-7.5, to form a stable thio-ester (Figure 1). At higher pH, NEM can also react with amino groups or undergo hydrolysis15. NEM is typically used to block free thiol groups, in order to prevent disulfide bond formation or inhibit enzymatic activity. For example, NEM is often used to block desumoylating enzymes, which are cysteine proteases. In the described co-immunoprecipitation protocol, NEM was initially included in the lysis buffer because it had been reported that the sumoylation of influenza proteins can influence the interaction between viral proteins16. Unexpectedly, the addition of NEM proved to be key to document the interaction between influenza NP and mouse Mx1 by co-immunoprecipitation. It is unclear why the addition of NEM is crucial to detect the NP–Mx1 interaction. Possibly the interaction is too transient and/or weak. NEM could stabilize the interaction, e.g., by preserving a specific conformation of Mx1, a viral protein or even an unknown third component. Such a stabilizing effect of NEM has been observed before, e.g., for the interaction between the ribonucleotide reductase M1 and its inhibitor gemcitabine (F2dC)17. Mx1 and NP both contain multiple cysteine residues which could be modified by NEM. For example, a recent study by Rennie et al. demonstrated that a stalkless MxA-variant contains three solvent exposed cysteine residues which can be modified by iodoacetamide. Mutating these residues to serines did not influence the enzymatic activity of MxA, but prevented disulfide-mediated aggregation18. As these cysteines are conserved in Mx1, this suggests that the analogous cysteines in Mx1 can be modified by NEM and as such influence its conformation or solubility. In addition, NEM might also affect the GTPase activity of Mx1, which is essential for the anti-influenza activity of Mx1, and thereby stabilize the interaction between Mx1 and NP. However, a direct effect of NEM on the GTPase activity of Mx1 is unlikely, as NEM is also required to detect the interaction between influenza NP and GTPase inactive mutants of the Mx1 protein14. Clearly, more research is needed to unravel the effect of NEM on the NP–Mx1 interaction.
In summary, the described co-immunoprecipitation protocol allows to study the interaction between the antiviral Mx1 protein and its viral target, the influenza NP protein. This protocol could also be used to study other weak or transient interactions that depend on the stabilization of specific protein conformations. Protein-protein interaction that depend on specific conformations have been described before, e.g., for calcium-binding proteins such as calmodulin19. Finally, the beneficial role of NEM could also be used in other methods that detect protein-protein interactions, such as co-sedimentation assays.
Note: The following transfection and co-immunoprecipitation protocol is established for a 9 cm Petri dish format. Other formats are also possible after scaling the protocol.
1. Seeding the Human Embryonic Kidney (HEK) 293T Cells
2. Calcium-phosphate Transfection of HEK293T Cells
Note: Use 0.5-1 µg of pCAXL-NP or empty pCAXL plasmid in combination with 1-3 µg of pCAXL-Mx1 per 9 cm dish. Use an equal amount of total plasmid DNA in all samples; adjust with empty plasmid if necessary.
3. Co-immunoprecipitation
Note: Perform the co-immunoprecipitation 24 hr after transfection.
4. Analyze the (co-)Immunoprecipitated Proteins
N-ethylmaleimide is an organic compound that can be used to irreversibly modify free thiol groups, e.g. to inhibit cysteine proteases (Figure 1).
The antiviral Mx1 protein inhibits influenza A virus replication by interacting with the viral nucleoprotein. The optimized co-immunoprecipitation protocol described here allows to study this NP–Mx1 interaction. HEK293T cells were transfected with expression vectors for the antiviral Mx1 protein in the absence or prese...
Studying the interaction between antiviral proteins and their viral targets is very important to understand the details of the antiviral mechanism of these proteins. This can give new insights into how viruses and their hosts co-evolved and be the basis for the development of new antiviral strategies. The optimized co-immunoprecipitation protocol described here allows to study the interaction between the mouse Mx1 protein and its viral target, the influenza NP protein. The most important aspect of this protocol is the ad...
The authors declare that they have no competing financial interests.
This work was supported by FWO-Vlaanderen, the IOF project IOF10/StarTT/027 and Ghent University Special Research Grant BOF12/GOA/014.
Name | Company | Catalog Number | Comments |
DMEM high glucose | Gibco | 52100-047 | |
N-Ethylmaleimide | Sigma | E-3876 | Toxic |
Igepal CA-630 | Sigma | I-30212 | also known as NP40 |
Protease inhibitor cocktail | Roche | 11 873 580 001 | |
anti-NP monoclonal antibody | NIH Biodefense and Emerging Infections Research Resources Repository | NR-4282 | ascites blend of clones A1 and A3 |
anti-RNP polyclonal serum | NIH Biodefense and Emerging Infections Research Resources Repository | NR-3133 | directed against A/Scotland/840/74 (H3N2) |
Protein G Sepharose 4FF | GE Healthcare | 17-0618-01 | |
Hyperfilm ECL 18 x 24 cm | GE Healthcare | 28-9068-36 | |
ECL western blotting substrate | Pierce | 32106 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved