A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The elicited imitation procedure was established to examine the development of recall memory in infancy and early childhood. This procedure has been widely used to establish a solid foundation of the nature of recall memory in infancy and early childhood.
The ability to recall the past allows us to report on details of previous experiences, from the everyday to the significant. Because recall memory is commonly assessed using verbal report paradigms in adults, studying the development of this ability in preverbal infants and children proved challenging. Over the past 30 years, researchers have developed a non-verbal means of assessing recall memory known as the elicited or deferred imitation paradigm. In one variant of the procedure, participants are presented with novel three-dimensional stimuli for a brief baseline period before a researcher demonstrates a series of actions that culminate in an end- or goal-state. The participant is allowed to imitate the demonstrated actions immediately, after a delay, or both. Recall performance is then compared to baseline or to performance on novel control sequences presented at the same session; memory can be assessed for the individual target actions and the order in which they were completed. This procedure is an accepted analogue to the verbal report techniques used with adults, and it has served to establish a solid foundation of the nature of recall memory in infancy and early childhood. In addition, the elicited or deferred imitation procedure has been modified and adapted to answer questions relevant to other aspects of cognitive functioning. The broad utility and application of imitation paradigms is discussed, along with limitations of the approach and directions for future research.
The importance of recall memory cannot be overstated: this ability allows humans to report on mundane aspects of their day, such as what happened at their dentist appointment that morning, as well as their most significant life events, such as their wedding day or the day their child was born. Understanding the development of this ability is complicated, however, in that the verbal report methods used to examine recall memory in adults cannot be employed in studies with preverbal infants and children. For this reason, researchers developed a behavioral method known as elicited or deferred imitation to study recall memory before infants and children can discuss the past using language. This manuscript describes the procedure for implementing one version of the elicited or deferred imitation procedure with infants and children from 6 to 24 months of age. The described procedure is unique in that it that allows for the assessment of memory for the individual components of events as well as memory for temporal order information.
Piaget was among the first to indicate that deferred imitation was an index of representational ability.1 He based this conclusion in part on observations of his own children. For instance, Piaget reported that his 16 month-old daughter, Jacqueline, re-enacted a tantrum that she had seen demonstrated approximately 12 hr earlier by a friend. Importantly, Jacqueline imitated the event in the absence of her friend and after a relatively lengthy delay. For these reasons, Piaget reported that Jacqueline must have encoded and maintained a representation of the event so that she could re-enact it after a delay, in the absence of ongoing perceptual support for what she had witnessed earlier. Based on this observation and others, Piaget stated that the ability to recall the past emerged in the second year of life, as children were concurrently developing the ability to engage in symbolic representation (as evidenced by advances in language and pretend play).
More recently, the elicited or deferred imitation procedure has been standardized and is now extensively used to study recall memory and related abilities in preverbal and early-verbal children. In the procedure developed by Patricia Bauer,2,3 participants interact with three-dimensional materials used to create a novel sequence of events for a brief baseline period. A researcher then demonstrates how to complete the sequence of events, oftentimes with narration. Either immediately (immediate imitation) or after a delay ranging from minutes to months (deferred imitation), the participant is allowed the opportunity to imitate. The data are coded to determine whether the child performs (a) the demonstrated actions and (b) whether they are produced in the correct temporal order relative to baseline or relative to novel control sequences presented at the same session (see reference4 for additional information). Comparable but distinct imitation procedures have been developed and used by other researchers, including Andrew Meltzoff5 and Harlene Hayne.6,7
Multiple arguments have been proposed to indicate that the type of memory assessed in the elicited or deferred imitation procedure is declarative or explicit in nature (instead of non-declarative or implicit; see reference8 for information on the multiple memory systems perspective). Although an exhaustive list of relevant arguments can be found in other sources,9-14 three of the primary points are provided here. One indication that the type of memory being assessed is explicit or declarative in nature is that children talk about events that were experienced behaviorally in the context of the imitation procedure once they gain access to language;15,16 because implicit or non-declarative memories cannot be accessed using language, evidence of later verbal accessibility strongly suggests that the type of memory under investigation is declarative or explicit. Another argument is that individuals with damage to the medial temporal lobe17 or the hippocampus18 are impaired on age-appropriate imitation tasks. Because declarative or explicit memories rely on the functioning of the hippocampus and associated medial temporal lobe structures,19 evidence of reduced performance by individuals with brain damage to these regions suggests that the type of memory assessed is declarative or explicit. The third argument to indicate that imitation assesses recall memory in particular is that there is no perceptual support available to cue memory for temporal order information.13 Although the sequence materials themselves might serve to cue recall for individual target actions, the props used to complete the event provide no useful information as to the temporal order in which the target actions must be completed. As such, temporal order information must be encoded upon event demonstration and maintained over time. For these reasons, the elicited imitation procedure is commonly regarded as the gold standard for studying recall memory in preverbal and early-verbal infants and children (see references10,13,14,20-22).
Use of the elicited imitation procedure has provided a strong foundation for understanding advances in recall memory over the first three years of life. As discussed in previous reviews,4,23,24 developments in recall are evident in the duration of time over which memories are retained and in the robustness of established memories. In terms of duration, researchers have indicated that 6-month-old infants recall one step of a 3-step event sequence for up to 24 hr.6,25 By the time infants are 9 months of age, they remember the individual target actions that comprise a 2-step event sequence for 1 month.26,27 Memory for temporal order information is less robust, such that only approximately 50% of infants remember the order in which a 2-step sequence was previously demonstrated. When infants are 10 months of age, memory for individual target actions is retained for 6 months and temporal order information is maintained for 3 months.27 Only 10 months later, when children are 20 months of age, evidence of memory for temporal order information is apparent over durations of 12 months (and may even be evident for longer – 12 months was the longest duration over which the participants tested28).
When considering the robustness of recall, age-related changes are apparent in the number of exposures required to support retention and in the ability to flexibly apply learned information. For example, 6-month-olds require as many as 6 exposures to evidence memory over a 24 hr delay,6 whereas 20 month-olds need only one exposure to demonstrate recall after 1 month.29 In terms of representational flexibility, 12 month-olds do not generalize their learning across exemplars that only differ in color. Eighteen month-olds generalize their learning across cues that differ only in color, but do not demonstrate generalization when novel exemplars differ in both color and form. At 21 months, however, generalization across cues is more robust, such that children flexibly apply their learning to novel exemplars that vary on both dimensions.7 Moreover, research suggests that generalization is not born of forgetting: children retain information about the specific features of the original events as they flexibly apply their learning in new situations.30,31
The goal of this manuscript is to describe the elicited imitation procedure developed by Bauer in detail. The method described herein is unique in that the procedure allows for assessment of both memory for individual actions demonstrated by the researcher as well as memory for temporal order. As indicated previously, it is important to note that there is no perceptual information present within the individual props to cue the order in which the specific actions should be completed. Therefore, memory for pairs of actions completed in the correct temporal order is a more stringent test of recall relative to reproduction of individual target actions.
The three-dimensional stimuli used in the elicited imitation procedure are commonly created from commercially-available toys or constructed out of plastic and/or wood. The stimuli depict events that are either novel to the participants (such as making a gong or a merry-go-round) or events with which children may have had previous experience (such as feeding a baby or putting a teddy bear to bed; see references2,3,32 for studies that compare mnemonic performance on familiar versus novel events). Event sequences are further classified as being constrained by enabling relations, having arbitrary associations, or are mixed, such that they include some steps that are linked by enabling relations and others that are arbitrary in nature. Steps of sequences constrained by enabling relations must be completed in a specified temporal order for the sequence end-state to become apparent (although the sequences must be constructed so that children can perform all of the actions in any order). Figure 1 shows a three-step event sequence that is constrained by enabling relations.33 For studies with children younger than 20 months of age, sequences constrained by enabling relations are most often utilized, as children of these ages demonstrate chance performance (i.e., completing fewer than 50% of the demonstrated pairs of actions on sequences with arbitrary associations;34 see references2,28,32,35-37 for studies that compare mnemonic performance on events with different sequence constraints).
Figure 1: Example of the Three-step Enabling Event Sequence Make a Shaker. The left panel shows the first step of putting the block into one of the nesting cups; the middle panel shows the second step of assembling the nesting cups; the right panel shows the third step of shaking the assembled apparatus. The target actions must be performed in the correct temporal order for the sequence end-state to be realized, although the sequence materials are constructed so that the actions can be completed in any order. Figure and portions of the caption reproduced with permission from references.33,42 Please click here to view a larger version of this figure.
The elicited imitation procedure is most frequently used with infants and children ranging in age from 6 to 24 months (although methodological alterations can be made to accommodate the testing of older children and adults17,18). Typically developing or control participants are commonly recruited so that they are born at term (38 ± 2 weeks) and have not experienced any pre- or perinatal conditions that might negatively impact brain development and recall memory, as conditions such as preterm birth38,39 and gestational diabetes40,41 have been associated with reduced recall. In addition, researchers should be aware of the native language of the participants33,42 if verbal labels will be used during sequence demonstration or as retrieval cues.
Access restricted. Please log in or start a trial to view this content.
The administration instructions provided here are similar to those that have been approved previously by the Institutional Review Board at the University of California, Irvine.
1. Equipment
2. Testing Procedures
Figure 2: Sample Data Coding Sheet for the Three-step Enabling Event Sequence Make a Shaker. The three target actions ("Put it in," "Cover it up," and "Shake it") are shown multiple times for each of three phases of testing (baseline, immediate imitation, and delayed recall). Space is also provided to record the number of target actions and pairs of actions completed at each phase. Please click here to view a larger version of this figure.
Access restricted. Please log in or start a trial to view this content.
A recent elicited imitation study examined whether child language comprehension moderated the relation between the use of supportive adult language at sequence demonstration when recall was assessed behaviorally at encoding (immediate imitation) and at delayed recall 1 week later.33 Sixteen month-old children were presented with 6 novel 3-step event sequences that were constrained by enabling relations. After a brief baseline period, a researcher demonstrated each of two event ...
Access restricted. Please log in or start a trial to view this content.
Over the past 30 years, many researchers have used elicited or deferred imitation procedures to examine the development of recall memory in infancy and early childhood. One advantage of imitation procedures is that they are highly versatile: as such, they can be modified and adapted to answer various questions relevant to cognitive development. For example, the elicited imitation procedure has been administered in combination with electrophysiological indices of recognition memory so as to examine relations between encod...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
The author thanks members of the UCI Memory and Development Lab for their comments on a draft of this manuscript as well as their assistance with manuscript preparation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Camcorder | Canon | VIXIA HF R600 HD Flash Memory Camcorder | Any commercially-available camcorder that records in color and has audio will suffice |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved