A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The molecular mechanisms of the decondensation of highly compacted mitotic chromatin are ill-defined. We present a cell-free assay based on mitotic chromatin clusters isolated from HeLa cells and Xenopus laevis egg extract that faithfully reconstitutes the decondensation process in vitro.
During the vertebrate cell cycle chromatin undergoes extensive structural and functional changes. Upon mitotic entry, it massively condenses into rod shaped chromosomes which are moved individually by the mitotic spindle apparatus. Mitotic chromatin condensation yields chromosomes compacted fifty-fold denser as in interphase. During exit from mitosis, chromosomes have to re-establish their functional interphase state, which is enclosed by a nuclear envelope and is competent for replication and transcription. The decondensation process is morphologically well described, but in molecular terms poorly understood: We lack knowledge about the underlying molecular events and to a large extent the factors involved as well as their regulation. We describe here a cell-free system that faithfully recapitulates chromatin decondensation in vitro, based on mitotic chromatin clusters purified from synchronized HeLa cells and X. laevis egg extract. Our cell-free system provides an important tool for further molecular characterization of chromatin decondensation and its co-ordination with processes simultaneously occurring during mitotic exit such as nuclear envelope and pore complex re-assembly.
Xenopus laevis egg extract is a powerful and widely applied tool to study complicated cellular events in the simplicity of a cell-free assay. Since their first description by Lohka & Masui 1 they have been extensively used to study mitotic processes such as chromatin condensation 2, spindle assembly 3, nuclear envelope breakdown 4, but also nucleocytoplasmic transport 5 or DNA replication 6. The events taking place at the end of mitosis, necessary for reformation of the interphasic nucleus such as nuclear envelope reformation and nuclear pore complex reassembly are much less understood compared to the early mitotic events but can be similarly studied using Xenopus egg extract 7. We have recently established an assay based on Xenopus egg extract to study chromatin decondensation at the end of mitosis 8, an under-investigated process that awaits its detailed characterization.
In metazoans, chromatin is highly condensed at mitotic entry in order to perform faithfully segregation of the genetic material. To ensure that the chromatin is accessible for gene expression and DNA replication during interphase, it needs to be de-compacted at the end of mitosis. In vertebrates, chromatin is up to fifty-fold more compacted during mitosis compared to interphase 9, in contrast to yeasts where the mitotic compaction is usually much lower, e.g., only two-fold in S. cerevisiae 10. Vertebrate chromatin decondensation has been mostly studied in the context of sperm DNA reorganization after egg fertilization. A molecular mechanism, in which nucleoplasmin, an abundant oocyte protein, exchanges sperm-specific protamines to histones H2A and H2B stored in the egg. This process was also elucidated using Xenopus egg extract 11,12. However, the expression of nucleoplasmin is limited to oocytes 13 and mitotic chromatin does not contain these sperm-specific protamines. Therefore chromatin decondensation at the end of mitosis is nucleoplasmin independent 8.
For the in vitro decondensation reaction we employ extract generated from activated X.laevis eggs and chromatin clusters isolated from synchronized HeLa cells. Treatment of eggs with a calcium ionophore mimics the calcium release into the oocyte generated by sperm entry during fertilization. The calcium wave triggers the cell cycle resumption and the egg, arrested in the second metaphase of meiosis, progresses to the first interphase 14. Therefore, egg extracts prepared form activated eggs represent the mitotic exit/interphase state and are competent to induce events specific for mitotic exit like chromatin decondensation, nuclear envelope and pore complex reformation. For the isolation of mitotic chromatin clusters we used a slightly modified version of the protocol published by Gasser & Laemmli 15, where chromosome clusters are released by lysis from HeLa cells synchronized in mitosis and isolated in polyamine containing buffers by gradient centrifugations.
Mitotic Chromatin Cluster Isolation from HeLa Cells
1. Preparations
2. Synchronization of Cells
3. Mitotic Clusters Isolation
4. Preparations of Buffer for Interphasic Xenopus laevis Egg Extract
NOTE: Xenopus laevis frogs are maintained and treated in accordance with the guidelines and regulations set forth by the Convention of the council of Europe on the protection of vertebrate animals used for experimental and other purposes (EU ratified in 1998) and the German law pertaining to the use of vertebrate animals in research.
5. Protocolfor Interphasic Xenopus laevis Egg Extract
6. Preparation of Buffers for In Vitro Reconstitution of Chromatin Decondensation
7. Protocol for In Vitro Reconstitution of Chromatin Decondensation
8. Preparation of Buffer for Immunofluorescence Staining of In Vitro Reconstituted Chromatin Decondensation Samples
9. Protocol for Immunofluorescence Staining of In Vitro Reconstituted Chromatin Decondensation Samples
NOTE: All following incubations of the coverslips are made in a 24-well plate with at least 250 µl solution per well, if not stated otherwise. In vitro decondensed chromatin samples are more sensitive than fixed cells therefore be careful when adding or removing solutions. It is recommended to use plastic Pasteur pipettes cut angular. For washing steps and secondary antibody incubation place the plate at RT on rocking or rotating platform, moving not faster than 100 rpm.
Time dependence of the decondensation reaction
Figure 1 shows a typical time course of the decondensation assay. The cluster of chromosomes visible at the beginning of the reaction decondenses and merges into a single, round and smooth nucleus. When the egg extract is replaced by sucrose buffer the chromosome cluster remains condensed, which suggest that decondensation activity is present in the egg extract.
Chromatin decondensation is an energy dep...
Xenopus laevis egg extracts are a very useful tool to faithfully reproduce cellular processes in vitro, and this system was successfully used in the characterization of cell cycle and cell division events 2,3,5,6,17. Due to large stores of nuclear components sequestered in the egg during oogenesis, egg extracts are an excellent source of cellular components. Compared to other approaches like RNAi on mammalian tissue cell lines or genetic manipulation, it offers several advantages: ...
The authors have nothing to disclose.
This work was supported by the German Research Foundation and the ERC (AN377/3-2 and 309528 CHROMDECON to W.A.) and a PhD Fellowship of the Boehringer Ingelheim Fonds to A.K.S. Figure 1 & 2 are reprinted from Developmental Cell 31(3), Magalska et al., RuvB-like ATPases function in chromatin decondensation at the end of mitosis, 305-318, 2014, with kind permission from Elsevier.
Name | Company | Catalog Number | Comments |
spermine tetrahydrochloride | Fluka analytical | 85610-25G | |
spermidine trihydrochloride | Sigma | S2501-5G | |
high-purity digitonin | Millipore | 300410-1GM | toxic |
PMSF | Applichem | A0999,0100 | toxic |
thymidine | Calbiochem | 6060 | |
nocodazole | Calbiochem | 487928 | toxic |
37% formaldehyde solution | Roth | 7398-1 | toxic |
trypan blue solution (0.4%) | Sigma | T8154 | toxic |
1,4-dithiothreitol (DTT) | Roth | 6908.2 | |
AEBSF hydrochloride | Applichem | A1421,0001 | |
pepstatin | Roth | 2936.1/2/3 | |
leupeptin | Roth | CN334 | |
aprotinin | Roth | A162.3 | |
Percoll (colloidal silica particles solution) | GE Healthcare | 17-0891-01 | |
glutamine | Gibco | 25030-024 | |
Penicillin-Streptomycin | Gibco | 15140-122 | |
75 cm² tissue culture flasks | Greiner Bio-one | 658175 | |
heat-inactivated fetal bovine serum (FBS) | Gibco | 10500-064 | |
Homogenizer (40 ml tissue grinder) | Wheaton | 357546 | |
Neubauer chamber | Assistent | 441/1 | |
Oak Ridge Centrifuge Tubes, polycarbonate (50 ml) | Nalgene | 3118-0050 | |
100 µm cell strainer, nylon | BD Falcon | 352360 | |
cytochalasin B | Applichem | A7657,0010 | toxic |
cycloheximide | Roth | 8682.3 | toxic |
L-cystein | Merck | 1,028,381,000 | |
hCG available as Ovogest | MSD | 1431593 | |
PMSG available as Intergonan | MSD | 1431015 | |
A23187 (mixed calcium-magnesium-salt) | Enzo | ALX-450-002-M010 | toxic |
syringe needles (1.20 x 40 mm, 18 G x 1 1/2") | Braun | 4665120 | |
ATP | Serva | 10920.03 | |
GTP, 2 Na x 3 H20 | Roth | K056.1/2/3/4 | |
creatine phosphat disodium salt | Calbiochem | 2380 | |
creatine phosphokinase | Sigma | C3755-35KU | |
DMAP | Sigma | D2629-1G | |
DAPI | Roche | 10236276001 | |
PFA | Sigma | P-6148 | toxic |
centrifugation tubes for TLA 100 (7 x 10 mm, 5/16 x 13/16 in.) | Beckman Coulter | 343775 | |
"Cell-Saver" (tips with wide opening, 1,000 µl) | Biozym | 729065 | |
50% glutaraldehyde solution, grade I | Sigma alderich | G7651-10 ml | toxic |
0.1% (w/v) poly-L-lysine solution | Sigma | P8920-100 ml | |
flat-bottom tubes (6 ml, 16.0/55 mm) | Greiner Bio-one | 145211 | |
Vectashield mounting medium | Vector laboratories | H1000 | |
tubes for TLA120 (11 x 34 mm, 7/16 x 1 3/8 in.) | Beckman Coulter | 343778 | |
"Cell-Saver" (tips with wide opening, 200 µl) | Biozym | 729055 | |
12 mm coverslips | Thermo Scientific | 0784 #1 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved