A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented is the protocol for co-immobilizing whole-cell biocatalysts for cofactor regeneration and improved reusability, using the production of L-xylulose as an example. The cofactor regeneration is achieved by coupling two Escherichia coli strains expressing functionally complementary enzymes; the whole-cell biocatalyst immobilization is achieved by cell encapsulation in calcium alginate beads.

Abstract

We have recently developed a simple, reusable and coupled whole-cell biocatalytic system with the capability of cofactor regeneration and biocatalyst immobilization for improved production yield and sustained synthesis. Described herewith is the experimental procedure for the development of such a system consisting of two E. coli strains that express functionally complementary enzymes. Together, these two enzymes can function co-operatively to mediate the regeneration of expensive cofactors for improving the product yield of the bioreaction. In addition, the method of synthesizing an immobilized form of the coupled biocatalytic system by encapsulation of whole cells in calcium alginate beads is reported. As an example, we present the improved biosynthesis of L-xylulose from L-arabinitol by coupling E. coli cells expressing the enzymes L-arabinitol dehydrogenase or NADH oxidase. Under optimal conditions and using an initial concentration of 150 mM L-arabinitol, the maximal L-xylulose yield reached 96%, which is higher than those reported in the literature. The immobilized form of the coupled whole-cell biocatalysts demonstrated good operational stability, maintaining 65% of the yield obtained in the first cycle after 7 cycles of successive re-use, while the free cell system almost completely lost the catalytic activity. Therefore, the methods reported here provides two strategies that could help improve the industrial production of L-xylulose, as well as other value-added compounds requiring the use of cofactors in general.

Introduction

Reductive whole-cell biotransformation using microorganisms has become a widespread method for the chemo-enzymatic synthesis of commercially and therapeutically important biomolecules1-3. It presents several advantages over the use of isolated enzymes, especially the elimination of cost-intensive downstream purification processes and the demonstration of an extended lifetime4-7. For biocatalytic pathways where cofactors are required for product formation, whole-cell systems have the potential to provide in situ cofactor regeneration via the addition of inexpensive electron-donating co-substrate....

Protocol

1. Whole-cell Biocatalysts Preparation  

NOTE: The recombinant E. coli cells harboring pET28a-SpNox31 or pET28a-HjLAD28 are hereafter referred to as E. coliSpNox and E. coliHjLAD, respectively.

  1. Inoculate a single colony of E. coliHjLAD in 3 ml of Luria-Bertani (LB) medium supplemented with kanamycin (50 µg/ml) and incubate in an incubator shaker O/N at 37 oC, 250 rpm.
  2. Dilute the culture by 1:100 in 200 ml of fresh LB containing 50 µg/ml kanamycin and incubate at 37 oC, 250....

Results

To enable cofactor regeneration, L-xylulose synthesis was carried out in a coupled whole-cell biocatalytic system containing E. coliHjLAD and E. coliSpNox cells. Following the optimization of various parameters, the reusability of this system was improved by immobilizing it in calcium alginate beads (Figure 2).

L-xylulose Production with Cofactor .......

Discussion

Recent technological advancements have enabled a surge in the commercialization of recombinant biotherapeutics, resulting in a gradual rise in their market value in the biotechnology industry. One such advancement is the advent of metabolic engineering in recombinant microorganisms, which has shown a great promise in establishing scalable industrial systems38. As with most processes, the successful commercialization of recombinant biomolecules produced by genetically engineered microbes is highly dependent on .......

Disclosures

The authors declare no competing financial interests. The paper aims at reporting detailed methodology to generate a coupled whole-cell biocatalytic system immobilized in alginate beads. Scientific novelties have been reported in a previous study16.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2012159 and NRF-2013R1A1A2007561), Konkuk University, and the Department of Chemical Engineering and MCubed Program at the University of Michigan.

....

Materials

NameCompanyCatalog NumberComments
LB broth Sigma AldrichL3022-6X1KG
KanamycinFisherBP906-5
Isopropyl β-D-thiogalactopyranoside (IPTG)Sigma AldrichI6758-10G
Tris baseFisherBP1521
B-Nicotinamide adenine dinucleotide hydrateSigma AldrichN7004-1G
L-ArabinitolSigma AldrichA3506-10G
L-CysteineSigma Aldrich168149
Sulfuric acidSigma Aldrich320501-500ML
CarbazoleSigma AldrichC5132
Ethanol FisherBP2818-4
Sodium alginateSigma AldrichW201502
Calcium chloride dihydrateSigma Aldrich223506-500G
Excella E24 shaker incubatorNew Brunswick Scientific
Cary 60 UV-Vis SpectrophotometerAgilent Technologies
Centrifuge 5810REppendrof
BeakersFisher
SyringeFisher
NeedleFisher
Pioneer Analytical and Precision Weighing BalanceOhaus

References

  1. Carballeira, J. D., et al. Microbial cells as catalysts for stereoselective red-ox reactions. Biotech Adv. 27 (6), 686-714 (2009).
  2. Sun, B., Kantzow, C., Bresch, S., Castiglione, K., Weuster-Botz, D.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

ImmobilizationMulti biocatalystsAlginate BeadsCofactor RegenerationReusabilityWhole Cell Biocatalytic SystemBiocatalystsStabilityCofactor RegeneratingE ColiSpNOxHjLADNADH OxidaseL arabinitol DehydrogenaseRecombinantIPTGTris HCl BufferNADL arabinitolL xylulose

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved