A subscription to JoVE is required to view this content. Sign in or start your free trial.
This is a guideline for constructing in vivo vascularized tissue using a microsurgical arteriovenous loop or a flow-through pedicle configuration inside a tissue engineering chamber. The vascularized tissues generated can be employed for organ regeneration and replacement of tissue defects, as well as for drug testing and disease modeling.
In reconstructive surgery, there is a clinical need for an alternative to the current methods of autologous reconstruction which are complex, costly and trade one defect for another. Tissue engineering holds the promise to address this increasing demand. However, most tissue engineering strategies fail to generate stable and functional tissue substitutes because of poor vascularization. This paper focuses on an in vivo tissue engineering chamber model of intrinsic vascularization where a perfused artery and a vein either as an arteriovenous loop or a flow-through pedicle configuration is directed inside a protected hollow chamber. In this chamber-based system angiogenic sprouting occurs from the arteriovenous vessels and this system attracts ischemic and inflammatory driven endogenous cell migration which gradually fills the chamber space with fibro-vascular tissue. Exogenous cell/matrix implantation at the time of chamber construction enhances cell survival and determines specificity of the engineered tissues which develop. Our studies have shown that this chamber model can successfully generate different tissues such as fat, cardiac muscle, liver and others. However, modifications and refinements are required to ensure target tissue formation is consistent and reproducible. This article describes a standardized protocol for the fabrication of two different vascularized tissue engineering chamber models in vivo.
Fabricating functional vascularized tissue using a tissue engineering approach is an emerging paradigm in regenerative medicine.1,2 Many approaches to engineer new and healthy tissue for the replacement of injured tissue or defective organs have been developed,3-6 experimentally in small animal models with promising clinical potential.7,8 However, vascularization remains one of the great challenges for tissue engineering limiting its potential to grow tissues of clinically relevant size.9
Current approaches to vascularize tissue follow either an extrinsic pathway where new vessels grow from the recipient vascular bed and invade throughout the implanted tissue constructs10 or an intrinsic vascularization pathway where the vasculature grows and expands in unison with the newly developing tissue.11 The extrinsic approach traditionally involves seeding cells onto a scaffold in vitro and implanting the complete construct into the living animal with the expectation that nutrients, previously supplied by culture media, will be sourced from the circulation.12,13 The concept is simplistic as vascular ingrowth is too slow and only very thin implants (<1-2 mm thick) will remain viable. Providing nutrients and oxygen by means of a sufficient and rapid vascularization is at the heart of any successful attempts to grow more complex and larger tissue-engineered substitutes such as bone, muscle, fat and solid organs.14,15 Intrinsic vascularization offers the potential for larger constructs to develop by progressive tissue growth commensurate with its expanding blood supply. One design is the in vivo implantation into a chamber of a vascular pedicle with or without a cell seeded scaffold.5,6 This has paved the way to new procedures for the generation of thicker intrinsically vascularized tissues.16,17
More recently, strategies have been developed to pre-vascularize tissue grafts, prior to implantation. These incorporated blood vessel networks are aimed to inosculate with host vessels at implantation allowing for the rapid provision of a complete blood supply to improve the survival of all parts of a transplanted thick tissue graft.18
We pioneered an in vivo vascularized tissue engineering model in small animals that involves a subcutaneously implanted semi-rigid enclosed chamber containing a perfused vascular pedicle and cell-containing biomaterials. The chamber creates an ischemic environment that stimulates angiogenic sprouting from the implanted vessels.3 The vascular pedicle can either be a reconstructed arteriovenous loop or an intact flow-through artery and vein.3-6,19 This vascular pedicle sprouts a functioning and extensive arterio-capillary-venous network that links at both arteriole and venous ends with the vascular pedicle.3,20 Furthermore, the surrounding hollow support chamber protects the developing tissue from potentially deforming mechanical forces and prolongs the ischaemic drive to enhance vascularization.3,21,22 If the vessel pedicle is simply implanted into normal tissue and not inside the protected space of the chamber, angiogenic sprouting ceases along the same timeline as a normal wound and no new tissue will accumulate around the pedicle. Investigators have used this in vivo configuration to produce three-dimensional functional vascularized tissue constructs with supportive vasculature and of clinically relevant size.4,23 Furthermore, the engineered vascularized tissue constructs with its intact vascular pedicle can be harvested for subsequent transplantation at the injury site.24,25 A more clinically feasible scenario would be creating the chamber at the definitive site for reconstruction such as the breast. Thus, this de novo tissue engineering approach could have clinical potential to provide a new source of functional target tissue for reconstructive surgery.26-28
The following protocol will provide a general guide to construct an in vivo vascularized tissue engineering chamber in the rat, which could be adapted in different animal models and employed to examine the intricate processes of angiogenesis, matrix production, and cellular migration and differentiation.
The protocols described here have been approved by the Animal Ethics Committee of St. Vincent's Hospital Melbourne, Australia, and were conducted under strict adherence to the Australian National Health and Medical Research Council Guidelines.
NOTE: Two chamber protocols are described below. The two different models and their specific chamber designs are illustrated in Figure 1. Chamber (1) is made of polycarbonate (for rat arteriovenous loop chamber model). It is cylindrical with an internal diameter 13 mm and height 4 mm. A window at one point in the wall allows unimpeded access for the pedicle. In the second model (for rat flow-through pedicle chamber model), the chamber is made of polyacrylic and is rectangular (10 x 8 x 4 mm3 internal dimensions). It has two 1.5 mm openings on opposite sides to accommodate the femoral artery and vein as they transgress the chamber.
1. Rat Arteriovenous Loop Chamber Model (One Chamber Per Animal)
NOTE: Prior to starting surgery, make sure all the instruments have been properly sterilized. Likewise, ensure the instruments rest on sterile towels and are at a reasonable distance from the surgical field to avoid contamination during the procedure.
2. Flow-through Pedicle Chamber (Two Chambers per Animal)
3. Harvest of Chambers and Tissue Processing
The microsurgical creation of tissue engineering chambers was performed as described in the protocol above. Tissues generated inside the chambers can be examined histologically as describe in protocol step 3. Various tissue types have been successfully engineered using the in vivo vascularized chamber (Figure 2). These include cardiac tissue with neonatal rat cardiomyocytes (Figure 2A), muscle tissue with rat skeletal myoblasts (Figure 2B...
Engineering of the microcirculation is currently being investigated essentially through two approaches. The first involves developing a highly interconnected vascular network within the construct in vitro so that when implanted, capillaries from the host vascular bed connect with those of the transplanted construct through a process called inosculation, thus ensuring the delivery of nutrients not only to the periphery but also to the core.21,32,33 This is called pre-vascularization. The second approac...
The authors declare no competing interests.
This work was supported by grant funding from NHMRC and Stafford Fox Medical Foundation. The authors acknowledge the surgical assistance of Sue McKay, Liliana Pepe, Anna Deftereos and Amanda Rixon of the Experimental Medical and Surgical Unit, St. Vincent's Hospital, Melbourne. Support is also provided by the Victorian State Government's Department of Innovation, Industry and Regional Development's Operational Infrastructure Support Program.
Name | Company | Catalog Number | Comments |
1 15 Blade Scalpel | Braun | BB515 | |
1 Toothed Adson Forceps | Braun | BD527R | |
1 Needle Holder | Braun | BM201R | |
1 Bipolar Coagulator | Braun | US335 | |
1 Micro Needle Holder B-15-8.3 | S & T | 00763 | |
1 Micro Dilator Forceps D-5a.2 | S & T | 00125 | |
1 Micro Jeweler's Forceps JF-5 | S & T | 00108 | |
1 Micro Scissors - Straight SAS-11 | S & T | 00098 | |
1 Micro Scissors - Curved SDC-11 | S & T | 00090 | |
2 Single Clamps B-3 | S & T | 00400 | |
2 10/0 nylon suture | S & T | 03199 | |
1 6/0 nylon suture | Braun | G2095469 | |
2 4/0 Silk Sutures | Braun | C0760145 | |
Xilocaine 1% | Dealmed | 150733 | 10 mg/ml |
Heparin Sodium | Dealmed | 272301 | 5000 UI / ml |
Ringer Lactate | Baxter | JB2323 | 500 ml |
1 dome-shaped tissue engineering chamber | custom made | ||
1 flow-through chamber | custom made | ||
Lectin I, Griffonia Simplicifolia | Vector Laboratories | B-1105 | 1.67 μg/mL |
Troponin T antibody | Abcam | Ab8295 | 4 μg/mL |
Human-specific Ku80 antibody | Abcam | Ab80592 | 0.06 μg/mL |
Desmin antibody | Dako | M0760 | 2.55 μg/mL |
Cell Tracker CM-DiI dye | Thermo Fisher Scientific | C-7000 | 3 mg/106 cells |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved