JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Genetics

Methyl-binding DNA capture Sequencing for Patient Tissues

Published: October 31st, 2016

DOI:

10.3791/54131

1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 2Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio

Here we present a protocol to investigate genome wide DNA methylation in large scale clinical patient screening studies using the Methyl-Binding DNA Capture sequencing (MBDCap-seq or MBD-seq) technology and the subsequent bioinformatics analysis pipeline.

Methylation is one of the essential epigenetic modifications to the DNA, which is responsible for the precise regulation of genes required for stable development and differentiation of different tissue types. Dysregulation of this process is often the hallmark of various diseases like cancer. Here, we outline one of the recent sequencing techniques, Methyl-Binding DNA Capture sequencing (MBDCap-seq), used to quantify methylation in various normal and disease tissues for large patient cohorts. We describe a detailed protocol of this affinity enrichment approach along with a bioinformatics pipeline to achieve optimal quantification. This technique has been used to sequence hundreds of patients across various cancer types as a part of the 1,000 methylome project (Cancer Methylome System).

Epigenetic regulation of genes through DNA methylation is one of the essential mechanisms required to determine the cell fate by stable differentiation of different tissue types in the body1. Dysregulation of this process has been known to cause various diseases including cancer2.

This process mainly involves the addition of methyl groups on the cytosine residue in the CpG dinucleotides of DNA3. There are a few different techniques currently used to investigate this mechanism, each having their own advantages as outlined in many studies2-8. Here we will discuss one of these techniques called Methyl-Binding DNA Capture sequencing (MBD....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All tissues are obtained following approval of the Institutional Review Board committee and when all participants consented to both molecular analyses and follow-up studies. The protocols are approved by the Human Studies Committee at University of Texas Health Science Center at San Antonio.

1. Methyl-binding DNA Capture (MBDCap)

  1. Sample collection and DNA isolation
    1. Collect bulk tumor or normal tissue samples from patient paraffin embedded tissue samples.
    2. Use a co.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We have used MBDCap-seq to study DNA methylation alterations in a large number of patients from diverse cancer types including breast12, endometrial13, prostate14, and liver cancers among others. Here we demonstrate some information from the breast cancer study published recently12. In this instance, we used the whole genome sequencing approach to identify CpG islands that are differentially methylated in tumor with respect to normal across different genomic regions. The investigation revealed that.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The MBDCap-seq technique is an affinity enrichment approach3, considered as a cost effective alternative when investigating cohorts with a large number of patients15. The pipeline presented here describes a comprehensive approach from sample procurement to data analysis and interpretation. One of the most important steps is setting up a PCR amplification procedure to improve the PCR efficiency of the GC enriched regions in the genome as this is where DNA methylation occurs. Also, it is essential to ensure that after seq.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The work is supported by CPRIT Research Training Award RP140105, as well as partially supported by US National Institutes of Health (NIH) grants R01 GM114142 and by William & Ella Owens Medical Research Foundation.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Methylminer DNA enrichment Kit Invitrogen ME10025
Dynabeads M-280 Streptavidin Invitrogen 112-05D
Bioruptor Plus Sonication Device diagenode B01020001
3M sodium acetate pH 5.2 Sigma S7899 100ml
SPRIworks Fragment Library System I Beckman Coulter A50100 Fully automated library construction system
Adapter Primers Bioo Scientific 514104 PCR primer mix
Qubit Invitrogen Q32854 Fluorometric Quantitation System
PCR master mix KAPA scientific KK2621 PCR master mix
AMPure XP Beckman Coulter A63881 PCR Purification beads
EB Buffer Qiagen 19086
HiSeq 2000 Sequencing System Illumina

  1. Trimarchi, M. P., Mouangsavanh, M., Huang, T. H. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine. Chin. J. Cancer. 30, 749-756 (2011).
  2. Nair, S. S., et al. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics. 6, 34-44 (2011).
  3. Zuo, T., Tycko, B., Liu, T. M., Lin, J. J., Huang, T. H. Methods in DNA methylation profiling. Epigenomics. 1, 331-345 (2009).
  4. Clark, C., et al. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium HumanMethylation450 BeadChip((R)) for methylome profiling. PLoS One. 7, e50233 (2012).
  5. Walker, D. L., et al. DNA methylation profiling: comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip. Epigenomics. , 1-16 (2015).
  6. Huang, Y. W., Huang, T. H., Wang, L. S. Profiling DNA methylomes from microarray to genome-scale sequencing. Technol. Cancer Res. Treat. 9, 139-147 (2010).
  7. Serre, D., Lee, B. H., Ting, A. H. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res. 38, 391-399 (2010).
  8. Brinkman, A. B., et al. Whole-genome DNA methylation profiling using MethylCap-seq. Methods. 52, 232-236 (2010).
  9. Wang, R., et al. LOcating non-unique matched tags (LONUT) to improve the detection of the enriched regions for ChIP-seq data. PLoS One. 8, e67788 (2013).
  10. Gu, F., et al. CMS: a web-based system for visualization and analysis of genome-wide methylation data of human cancers. PLoS One. 8, e60980 (2013).
  11. Lan, X., Bonneville, R., Apostolos, J., Wu, W., Jin, V. X. W-ChIPeaks: a comprehensive web application tool for processing ChIP-chip and ChIP-seq data. Bioinformatics. 27, 428-430 (2011).
  12. Jadhav, R. R., et al. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin. Epigenetics. 7, 13 (2015).
  13. Hsu, Y. T., et al. Promoter hypomethylation of EpCAM-regulated bone morphogenetic protein gene family in recurrent endometrial cancer. Clin. Cancer Res. 19, 6272-6285 (2013).
  14. Wang, Y. V., et al. Roles of Distal and Genic Methylation in the Development of Prostate Tumorigenesis Revealed by Genome-wide DNA Methylation Analysis. Sci. Rep. , (2015).
  15. Plongthongkum, N., Diep, D. H., Zhang, K. Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Gen. 15, 647-661 (2014).
  16. Riebler, A., et al. BayMeth: improved DNA methylation quantification for affinity capture sequencing data using a flexible Bayesian approach. Genome Biol. 15, R35 (2014).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved