JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats

Published: July 1st, 2016

DOI:

10.3791/54158

1Department of Optometry and Vision Sciences, University of Melbourne

This protocol describes simultaneous measurement of electroretinogram and visual evoked potentials in anesthetized rats.

The electroretinogram (ERG) and visual evoked potential (VEP) are commonly used to assess the integrity of the visual pathway. The ERG measures the electrical responses of the retina to light stimulation, while the VEP measures the corresponding functional integrity of the visual pathways from the retina to the primary visual cortex following the same light event. The ERG waveform can be broken down into components that reflect responses from different retinal neuronal and glial cell classes. The early components of the VEP waveform represent the integrity of the optic nerve and higher cortical centers. These recordings can be conducted in isolation or together, depending on the application. The methodology described in this paper allows simultaneous assessment of retinal and cortical visual evoked electrophysiology from both eyes and both hemispheres. This is a useful way to more comprehensively assess retinal function and the upstream effects that changes in retinal function can have on visual evoked cortical function.

Measurement of the electroretinogram (ERG) and visual evoked potential (VEP) provide useful quantitative assessments of the integrity of the visual pathway. The ERG measures the electrical responses of the retina to light stimulation, while the VEP measures the corresponding functional integrity of the visual pathways from the retina to the primary visual cortex following the same light event. This manuscript describes a protocol for the recording and analysis of ERG and VEP responses in a commonly used laboratory model, the rat.

The ERG provides an index of the functional integrity of a number of key retinal cell classes by quantifying the....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experimental procedures were conducted according to the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, set out by the National Health and Medical Research Council in Australia. Ethics clearance was obtained from the University of Melbourne, Science Faculty, Animal Ethics Committee (approval number 0911322.1).

1. Pre-implantation of Chronic VEP Electrodes

Note: If concurrent ERG and VEP signals are to be collected animals must be surgically implanted with VEP electrode.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The ERG a-wave (> -1.38 log cd.s.m-2), b-waves (> - 4.99 log cd.s.m-2) STRs (< - 4.99 log cd.s.m-2) and the VEPs (> - 0.52 log cd.s.m-2) were recorded simultaneously (Figure 1 and 3). At very dim flashes, a positive STR (pSTR) is seen at approximately 110 msec after the flash, and a negative STR (nSTR) at approximately 220 msec (Figures 1 and 2). An ERG with a large b-wave, peaks between 50 to 10.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The ERG and VEP are objective measures of visual function from the retina and cortex, respectively. The advantage of simultaneous recording is that a more comprehensive view of the entire visual pathway is afforded. Specifically, the complementary information from their concurrent assessment could provide a clearer delineation of the site of injury in the visual pathway (e.g., for disorders with overlapping ERG yet distinct VEP manifestations18, when optic neuropathy may co-exist with primary cerebral.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Funding for this project was provided by the National Health and Medical Research Council (NHMRC) 1046203 (BVB, AJV) and Melbourne Neuroscience Institute Fellowship (CTN).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Alligator clip generic brand HM3022 Stainless steel 26 mm clip for connecting VEP screw electrodes to cables
Bioamplifier ADInstruments ML 135 For amplifying ERG and VEP signals
Carboxymethylcellulose sodium 1.0% Allergan CAS 0009000-11-7 Viscous fluid for improving signal quality of the active ERG electrode
Carprofen 0.5% Pfizer Animal Health Group CAS 53716-49-7 Proprietary name: Rimadyl injectable (50 mg/mL). For post-surgery analgesia, diluted to 0.5% (5 mg/mL) in normal saline
Chlorhexadine 0.5% Orion Laboratories 27411, 80085 For disinfecting surgical instruments
Circulating water bath Lauda-Königshoffen MGW Lauda For maintaining body temperature of the anesthetized animal during surgery and electrophysiological recordings
Dental amalgam DeguDent GmbH 64020024 For encasing the electrode-skull assembly to make it more robust
Dental burr Storz Instruments, Bausch and Lomb #E0824A A miniature drill head of ~0.7mm diameter for making a small hole in the skull over each hemisphere to implant VEP screws
Drill Bosch Dremel 300 series An automatic drill for trepanning
Electrode lead Grass Telefactor  F-E2-30 Platinum cables for connecting silver wire electrodes to the amplifier
Faraday Cage custom-made Ensures light proof to maintain dark adaptation. Encloses the Ganzfeld setup to improve signal to noise ratio
Gauze swabs Multigate Medical Products Pty Ltd 57-100B For drying the surgical incision and exposed skull surface during surgery
Ganzfeld integrating sphere Photometric Solutions International Custom designed light stimulator: 36 mm diameter, 13 cm aperture size
Velcro VELCRO Australia Pty Ltd VELCRO Brand Reusable Wrap Hook-and-loop fastener to secure the electrodes and the animal on the recording platform
Isoflurane 99.9% Abbott Australasia Pty Ltd CAS 26675-46-7 Proprietary Name: Isoflo(TM) Inhalation anaaesthetic. Pharmaceutical-grade inhalation anesthetic mixed with oxygen gas for VEP electrode implant surgery
Ketamine  Troy Laboratories Ilium Ketamil Proprietary name: Ketamil Injection, Brand: Ilium. Pharmaceutical-grade anesthetic for electrophysiological recording
Luxeon LEDs Phillips Lighting Co. For light stimulation twenty 5 watt and one 1 watt LEDs.
Micromanipulator Harvard Apparatus BS4 50-2625 Holds the ERG active electrode during recordings
Needle electrode Grass Telefactor  F-E2-30 Subcutaneously inserted in the tail to serve as the ground electrode for both the ERG and VEP
Phenylephrine 2.5% minims  Bausch and Lomb CAS 61-76-7 Instilled with Tropicamide to achieve maximal dilation for ERG recording
Povidone iodine 10% Sanofi-Aventis CAS 25655-41-8 Proprietory name: Betadine, Antiseptic to prepare the shaved skin for surgery 10%, 500 mL
Powerlab data acquisition system ADInstruments ML 785 Controls the LEDs
Proxymetacaine 0.5% Alcon Laboratories  CAS 5875-06-9 For corneal anaesthesia during ERG recordings
Saline solution Gelflex Non-injectable, for electroplating silver wire electrodes
Scope Software ADInstruments version 3.7.6 Simultaneously triggers the stimulus via the Powerlab system and collects data
Silver (fine round wire) A&E metal 0.3 mm Used to make active and inactive ERG electrodes, and the inactive VEP electrode
Stainless streel screws  MicroFasterners 0.7 mm shaft diameter, 3 mm in length to be implanted over the primary visual cortex and serve as the active VEP electrodes
Stereotaxic frame David Kopf Model 900 A small animal stereotaxic instrument for locating the primary visual cortices according to Paxinos & Watson's 2007 rat brain atlas coordinates
Surgical blade Swann-Morton Ltd. 0206 For incising the area of skin overlaying the primary visual cortex to implant the VEP electrodes
Suture Shanghai Pudong Jinhuan Medical Products Co.,Ltd 3-0 silk braided suture non-absorbable, for skin retraction during VEP electrode implantation surgery
Tobramycine eye ointment 0.3% Alcon Laboratories  CAS 32986-56-4 Proprietary name: Tobrex. Prophylactic antibiotic ointment applied around the skin wound after surgery
Tropicamide 0.5% Alcon Laboratories  CAS 1508-75-4 Proprietary name: 0.5% Mydriacyl eye drop, Instilled to achieve mydriasis for ERG recording
Xylazine Troy Laboratories Ilium Xylazil-100 Pharmaceutical-grade anesthetic for electrophysiological recording
Pipette tip  Eppendorf Pty Ltd 0030 073.169 Eppendorf epTIPS 100 - 5000 mL, for custom-made electrodes
Microsoft Office Excel Microsoft version 2010 spreadsheet software for data analysis
Lethabarb Euthanazia Injection Virbac (Australia) Pty Ltd LETHA450 325 mg/mL pentobarbital sodium for rapid euthanazia

  1. Nguyen, C. T. O., Vingrys, A. J., Bui, B. V. Dietary omega-3 fatty acids and ganglion cell function. Invest Ophthalmol Vis Sci. 49, 3586-3594 (2008).
  2. Weymouth, A. E., Vingrys, A. J. Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res. 27, 1-44 (2008).
  3. Tsai, T. I., Bui, B. V., Vingrys, A. J. Effect of acute intraocular pressure challenge on rat retinal and cortical function. Invest Ophthalmol Vis Sci. 55, 1067-1077 (2014).
  4. Cowey, A., Franzini, C. The retinal origin of uncrossed optic nerve fibres in rats and their role in visual discrimination. Exp Brain Res. 35, 443-455 (1979).
  5. Weinstein, G. W., Odom, J. V., Cavender, S. Visually evoked potentials and electroretinography in neurologic evaluation. Neurol Clin. 9, 225-242 (1991).
  6. Odom, J. V., et al. Visual evoked potentials standard (2004). Doc Ophthalmol. 108, 115-123 (2004).
  7. Ridder, W. H., Nusinowitz, S., Heckenlively, J. R. Causes of cataract development in anesthetized mice. Exp Eye Res. 75, 365-370 (2002).
  8. Nixon, P. J., Bui, B. V., Armitage, J. A., Vingrys, A. J. The contribution of cone responses to rat electroretinograms. Clin Experiment Ophthalmol. 29, 193-196 (2001).
  9. Bui, B. V., et al. Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina. J Ophthalmol. 2013, 262467 (2013).
  10. Nguyen, C. T., Vingrys, A. J., Bui, B. V. Dietary omega-3 fatty acids and ganglion cell function. Invest Ophthalmol Vis Sci. 49, 3586-3594 (2008).
  11. Hood, D. C., Birch, D. G. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci. 5, 379-387 (1990).
  12. Birch, D. G., Hood, D. C., Locke, K. G., Hoffman, D. R., Tzekov, R. T. Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors - Normal aging, progression with disease, and test-retest variability. Arch Ophthalmol. 120, 1045-1051 (2002).
  13. Bui, B. V., Vingrys, A. J. Development of receptoral responses in pigmented and albino guinea-pigs (Cavia porcellus). Doc Ophthalmol. 99, 151-170 (1999).
  14. Robson, J. G., Saszik, S. M., Ahmed, J., Frishman, L. J. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol. 547, 509-530 (2003).
  15. Severns, M. L., Johnson, M. A. The care and fitting of Naka-Rushton functions to electroretinographic intensity-response data. Doc Ophthalmol. 85, 135-150 (1993).
  16. Bui, B. V., Fortune, B. Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci. 23, 155-167 (2006).
  17. Bui, B. V., Fortune, B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 555, 153-173 (2004).
  18. Tremblay, F., Laroche, R. G., Debecker, I. The Electroretinographic Diagnosis of the Incomplete Form of Congenital Stationary Night Blindness. Vision Res. 35, 2383-2393 (1995).
  19. Bayer, A. U., Keller, O. N., Ferrari, F., Maag, K. P. Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer's disease and Parkinson's disease. Am J Ophthalmol. 133, 135-137 (2002).
  20. Wostyn, P., Audenaert, K., De Deyn, P. P. An abnormal high trans-lamina cribrosa pressure difference: A missing link between Alzheimer's disease and glaucoma. Clinical Neurology and Neurosurgery. 110, 753-754 (2008).
  21. Yucel, Y. H., Zhang, Q. A., Weinreb, R. N., Kaufman, P. L., Gupta, N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 22, 465-481 (2003).
  22. Gupta, N., Yucel, Y. H. What changes can we expect in the brain of glaucoma patients. Survey of Ophthalmology. 52, 122-126 (2007).
  23. Kong, Y. X., et al. Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiol Aging. 33, 1115-1125 (2012).
  24. Bui, B. V., Sinclair, A. J., Vingrys, A. J. Electroretinograms of albino and pigmented guinea-pigs (Cavia porcellus). Aust N Z J Ophthalmol. 26, 98-100 (1998).
  25. Jobling, A. I., Wan, R., Gentle, A., Bui, B. V., McBrien, N. A. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res. 88, 458-466 (2009).
  26. Robson, J. G., Frishman, L. J. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol. 95, 187-215 (1998).
  27. Robson, J. G., Frishman, L. J. The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res. 39, 1-22 (2014).
  28. Hudnell, H. K., Boyes, W. K. The comparability of rat and human visual-evoked potentials. Neurosci Biobehav Rev. 15, 159-164 (1991).
  29. Charng, J., et al. Conscious wireless electroretinogram and visual evoked potentials in rats. PLoS One. 8, e74172 (2013).
  30. Hetzler, B. E., Berger, L. K. Ketamine-Induced Modification of Photic Evoked-Potentials in the Superior Colliculus of Hooded Rats. Neuropharmacology. 23, 473-476 (1984).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved