A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We have modified the conditions for DFAT cell generation and provide herein information regarding the use of an improved growth medium for the production of these cells.
Tissue engineering and cell therapy hold great promise clinically. In this regard, multipotent cells, such as mesenchymal stem cells (MSCs), may be used therapeutically, in the near future, to restore function to damaged organs. Nevertheless, several technical issues, including the highly invasive procedure of isolating MSCs and the inefficiency surrounding their amplification, currently hamper the potential clinical use of these therapeutic modalities. Herein, we introduce a highly efficient method for the generation of dedifferentiated fat cells (DFAT), MSC-like cells. Interestingly, DFAT cells can be differentiated into several cell types including adipogenic, osteogenic, and chondrogenic cells. Although other groups have previously presented various methods for generating DFAT cells from mature adipose tissue, our method allows us to produce DFAT cells more efficiently. In this regard, we demonstrate that DFAT culture medium (DCM), supplemented with 20% FBS, is more effective in generating DFAT cells than DMEM, supplemented with 20% FBS. Additionally, the DFAT cells produced by our cell culture method can be redifferentiated into several tissue types. As such, a very interesting and useful model for the study of tissue dedifferentiation is presented.
Cell therapy and tissue engineering are hot topics in the field of regenerative medicine1-5. While these therapeutic modalities hold great promise, several technical issues currently hamper their clinical use. In this regard, as in the generation of iPS cells, all tissue engineering therapies must produce cells free of external gene transductions in order to maintain patient safety. Accordingly, we were the first group to successfully produce human DFAT cells6. Several other research groups have since adopted our method to generate DFAT cells of mammalian origin7-9, further highlighting the usefulness of our model.
Over the course of several studies, we have found that the quality of the cell culture environment may be modified by adjusting the content of the cell medium. This finding has led to an increase in the success rate of DFAT cell production and improved cell quality; both critical factors in efficiently generating cells for future clinical trials. In this regard, an improved DFAT culture medium (DCM, a medium similar to mesenchymal stem cell medium, which contains recombinant human insulin, serum albumin, L-glutamic acid, several fatty acids, and cholesterol) and a method for DFAT cell generation and proliferation was developed (more information about the contents of DCM is available upon request). Using this method high quality DFAT cells were generated with the ability to differentiate into several cell types including adipogenic, osteogenic, and chondrogenic cells. Altogether, this validated cell culture protocol enhances the quality of DFAT cells and may be quite useful for enhancing clinical applications of cell therapy and tissue engineering.
Samples of human subcutaneous fat were obtained from patients undergoing surgery in the Departments of Plastic Surgery, Urology, Pediatric Surgery and Orthopedic Surgery of Nihon University Itabashi Hospital (Tokyo, Japan). The patients gave written informed consent, and the Ethics Committee of Nihon University School of Medicine approved the study.
1. Tissue Preparation
2. Collagenase Digestion
3. Cell Isolation
4. Plating Cells
In this study, the method and toolkit for DFAT cell generation was improved (Figure 1). Our method allows us to generate DFAT cells using both DCM and DMEM medium containing 20% FBS (Figure 2A). As such, we compared the efficiency of DCM and DMEM in generating DFAT cells. In this regard, DCM enhanced DFAT cell proliferation by three times when compared to DMEM, regardless of the number of adipocytes (Figure 2A and B). Usi...
Mature adipocytes that undergo in vitro dedifferentiation, a process known as ceiling culture, may revert to a more primitive phenotype and gain proliferative abilities. These cells are referred to as dedifferentiated fat (DFAT) cells. The multilineage differentiation potential of DFAT cells was evaluated. Flow cytometry analysis and gene expression analysis revealed that DFAT cells were highly homogeneous in comparison to ASCs6. In fact, the cell-surface antigen profile of DFAT cells is very similar ...
The authors have nothing to disclose.
This research was supported in part by Program for Creating Start-ups from Advanced Research and Technology (START Program) from the Japan Society for the Promotion of Science (ST261006IP, TM) and by Program for the Strategic Research Foundation at Private Universities (2014-2019) (S1411018, TM) from the Ministry of Education, Sports, Science and Technology.
Name | Company | Catalog Number | Comments |
CSTI303-MSC medium | CSTI | 87-671 | This medium is defined as DCM in the text |
PBS(-) | Wako | 166-23555 | It does not contain Mg2+ and Ca2+ |
DMEM medium | Gibco | 11965-092 | |
Fetal Bovine Serum | Sigma | 172012 | |
Collagenase type II | Sigma | C-6885 | |
Scissors | Takasago Medical Industry Co., Ltd | TKZ-F2194-1 | |
Shaker | TAITEC | Bioshaker V.BR-36 | |
Falcon Cell Strainer 100 μm Yellow | CORNING LIFE SCIENCES | DL 352360 | |
Falcon 12.5 cm² Rectangular Canted Neck Cell Culture Flask with Blue Vented Screw Cap | CORNING LIFE SCIENCES | 353107 | |
18 G needle | NIPRO | 02-002 | |
20 ml Syringe | NIPRO | 08-753 | |
Z Series Coulter Counter | BECKMAN COULTER | 383550 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved