A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes the use of an inertial microfluidics-based buffer exchange strategy to purify micro/nanoparticle engineered cells with efficient depletion of unbound particles.
Engineering cells with active-ingredient-loaded micro/nanoparticles (NPs) is becoming an increasingly popular method to enhance native therapeutic properties, enable bio imaging and control cell phenotype. A critical yet inadequately addressed issue is the significant number of particles that remain unbound after cell labeling which cannot be readily removed by conventional centrifugation. This leads to an increase in bio imaging background noise and can impart transformative effects onto neighboring non-target cells. In this protocol, we present an inertial microfluidics-based buffer exchange strategy termed as Dean Flow Fractionation (DFF) to efficiently separate labeled cells from free NPs in a high throughput manner. The developed spiral microdevice facilitates continuous collection (>90% cell recovery) of purified cells (THP-1 and MSCs) suspended in new buffer solution, while achieving >95% depletion of unbound fluorescent dye or dye-loaded NPs (silica or PLGA). This single-step, size-based cell purification strategy enables high cell processing throughput (106 cells/min) and is highly useful for large-volume cell purification of micro/nanoparticle engineered cells to achieve interference-free clinical application.
Engineering cells by agent-loaded micro/nanoparticles (NPs) is a simple, genomic integration-free, and versatile method to enhance bioimaging capability and augment/supplement its native therapeutic properties in regenerative medicine.1-3 Cellular modifications are achieved by labeling the plasma membrane or cytoplasm with an excess concentration of agent-loaded NPs to saturate the binding sites. However, a major drawback of this method is the significant quantities of unbound particles remaining in solution after cell labeling processes, which can potentially confound precise identification of particle-engineered cells or complicate therapeutic outcomes.4,5 In addition, exposure to NPs containing transformative agents (growth factors, corticosteroids, etc.) at excessively high concentration can cause cytotoxicity and misdirected exposure may induce unintended consequences on non-target cells. Even particulate carriers comprising of "biocompatible" materials [e.g., poly(lactic co-glycolic acid), PLGA] can incite potent immune cell responses under certain conditions as well.6 This is especially risky in individuals with impaired immunity (e.g., rheumatoid arthritis) which potentially delays systemic nanoparticle clearance.7 Thus, efficient removal of free particles prior to the introduction of particle-engineered cells is of great importance to minimize toxicity profile and reduce misdirected exposure to agent-loaded particles in vivo.
Conventional gradient centrifugation is often used to separate engineered cells from free particles but is laborious and operated in batch mode. Moreover, shear stresses experienced by cells during high-speed centrifugation and the constituents of the density gradient medium may compromise cell integrity and/or influence cell behavior.8 Microfluidics is an attractive alternative with several separation technologies including deterministic lateral displacement (DLD)9, dieletrophoresis10,11 and acoustophoresis12 developed for small particles separation and buffer exchange applications. However, these methods suffer from low throughput (1-10 µl·min−1) and are prone to clogging issues. Active separations such as dielectrophoresis-based methods also require differences in intrinsic dielectrophoretic cell phenotypes or additional cell labeling steps to achieve separation. A more promising approach involves inertial microfluidics — the lateral migration of particles or cells across streamlines to focus at distinct positions due to dominant lift forces (FL) at high Reynolds number (Re).13 Due to its high flow conditions and superior size resolution, it has often been exploited for size-based cell separation14,15 and buffer exchange applications.16-18 However, buffer exchange performance remains poor with ∼10−30% contaminant solution as the separated cells usually remain close to the boundary between original and new buffer solutions.16-18 More importantly, the size distribution of target cells has to be similar to achieve precise inertial focusing and separation from the original buffer solution which poses an issue especially in the processing of heterogeneous-sized cell types such as mesenchymal stem cells (MSCs).19
We have previously developed a new inertial microfluidics cell sorting technique termed Dean Flow Fractionation (DFF) for isolating circulating tumor cells (CTCs)20 and bacteria21 from whole blood using a 2-inlet, 2-outlet spiral microchannel device. In this video protocol, we will describe the process of labeling THP-1 (human acute monocytic leukemia cell line) suspension monocytic cells (~15 µm) and MSCs (10-30 µm) with calcein-loaded NPs, followed by fabrication and operation of the DFF spiral microdevice for efficient recovery of labeled cells and removal of unbound NPs.22 This single step purification strategy enables continuous recovery of labeled suspension and adherent cells suspended in fresh buffer solution without centrifugation. Moreover, it can process up to 10 million cells·ml−1, a cell density amenable for regenerative medicine applications.
1. Nanoparticles (NPs) Labeling of Mesenchymal Stem Cells and Monocytes
2. Microfluidic Device Preparation
After labeling the cells with bio imaging agent-loaded NPs overnight, the labeled cells (containing free particles) are harvested and purified by DFF spiral microdevice to remove free NPs in a single step process (Figure 1A). The 2-inlet, 2-outlet spiral microchannel is designed by engineering software and microfabricated using SU-8 photoresist. The patterned silicon wafer is then used as a template for PDMS replica molding using soft lithography techniques (Figur...
The DFF cell purification technology described herein enables rapid and continuous separation of labeled cells in a high throughput manner. This separation approach is ideal for large sample volume or high cell concentration sample processing, and is better than conventional membrane-based filtration which is prone to clogging after extended use. Similarly, affinity-based magnetic separation requires additional cell labelling steps which are laborious and expensive. The purified cells are shown to retain their labeled ag...
The authors have nothing to disclose.
Kind gift of THP-1 cells from Dr. Mark Chong and assistance in microfabrication from Dr. Yuejun Kang and Dr. Nishanth V. Menon (School of Chemical and Biomedical Engineering, Nanyang Technological University) were greatly acknowledged. This project was funded by NTU-Northwestern Institute of Nanomedicine (Nanyang Technological University). H.W.H. was supported by Lee Kong Chian School of Medicine (LKCMedicine) postdoctoral fellowship.
Name | Company | Catalog Number | Comments |
Cell lines & Media | |||
Mesenchymal Stem Cells (MSCs) | Lonza | PT-2501 | |
Dulbecco’s modified Eagle’s medium (DMEM) | Lonza | 12-614F | |
Fetal Bovine Serum (FBS) | Gibco | 10270-106 | |
THP-1 monocyte cells (THP-1) | ATCC | TIB-202 | |
Roswell Park Memorial Institute (RPMI) 1640 media | Lonza | 12-702F | |
Reagents & Materials | |||
0.01% poly-L-lysine (PLL) | Sigma-Aldrich | P8920 | |
3 ml Syringe | BD | 302113 | Syringe 3 ml Luer-Lock |
60 ml Syringe | BD | 309653 | Syringe 60 ml Luer-Lock |
Bovine Serum Albumin (BSA) | Biowest | P6154-100GR | |
Calcein, AM (CAM) | Life Technologies | C1430 | |
Calcein | Sigma-Aldrich | C0875 | |
Isopropanol | Fisher Chemical | #P/7507/17 | HPLC Grade 2.5 L |
Phosphate-Buffered Saline (PBS) | Lonza | 17-516Q/12 | |
Plain Microscope Slides | Fisher Scientific | FIS#12-550D | 75 x 25 x 1 mm3 |
Polydimethylsiloxane (PDMS) | Dow Corning | SYLGARD® 184 | |
Scotch tape | 3M | 21200702044 | 18 mm x 25 m |
Silica NPs (∼200 μm) | Sigma-Aldrich | 748161 | Pore size 4 nm |
Syringe Tip | JEC Technology | 7018302 | 23 G 0.013 x 0.25 |
Trypsin-EDTA (0.25%) | Life Technologies | 25200-056 | |
Tygon Tubing | Spectra-Teknik | 06419-01 | 0.02 x 0.06" 100 |
Poly (D,L-lactide-co-glycolide) (PLGA; 50:50) | Sigma-Aldrich | P2191 | |
Equipment | |||
Biopsy punch | Harris Uni-Core | 69036-15 | 1.50 mm |
Dessicator | Scienceware | 111/4 IN OD | |
High-speed Camera | Phantom | V9.1 | |
Inverted phase-contrast microscope | Nikon | Eclipse Ti | |
Plasma cleaner | Harrick Plasma | PDC-002 | |
Syringe Pump | Chemyx | CX Fusion 200 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved