A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol for optical mapping of electrical activity from the mouse right atrium and especially the sino-atrial node, at a high spatial and temporal resolution.
Sino-atrial node (SAN) dysfunctions and associated complications constitute important causes of morbidity in patients with cardiac diseases. The development of novel pharmacological therapies to cure these patients relies on the thorough understanding of both normal physiology and pathophysiology of the SAN. Among the studies of cardiac pacemaking, the mouse SAN is widely used due to its feasibility for modifications in the expression of different genes that encode SAN ion channels or calcium handling proteins. Emerging evidence from electrophysiological and histological studies has also proved the representativeness and similarity of the mouse SAN structure and functions to larger mammals, including the presence of specialized conduction pathways from the SAN to the atrium and a complex pacemakers' hierarchy within the SAN. Recently, the technique of optical mapping has greatly facilitated the exploration and investigation of the origin of excitation and conduction within and from the mouse SAN, which in turn has extended the understanding of the SAN and benefited clinical treatments of SAN dysfunction associated diseases. In this manuscript, we have described in detail how to perform the optical mapping of the mouse SAN from the intact, Langendorff-perfused heart and from the isolated atrial preparation. This protocol is a useful tool to enhance the understanding of mouse SAN physiology and pathophysiology.
Novel scientific breakthroughs that lead to leaps in the understanding of human physiology are often preceded by technological advances. Fluorescent optical mapping, for example, enables investigation of multiple physiological parameters in both cells and tissues.1,2 It significantly improved our understanding of how the anatomical structure is associated with electrophysiological functions and dysfunctions. In the heart, the natural pacemaker and conduction systems such as the sinoatrial node (SAN) and the atrioventricular junction consist of nodal myocytes that are insulated by the surrounding atrial myocytes.3-5 Such organization creates complex three-dimensional structures with specialized electrical properties. Both structural and functional remodeling of these pacemaker structures has been recognized to form significant electrophysiological heterogeneities.6,7 Understanding the mechanism underlying how such heterogeneities result in SAN dysfunctions and atrial arrhythmogenesis will dramatically benefit the clinical treatment of these diseases. It requires a technique to visualize the propagation of electrical signals at the tissue level, such as optical mapping.
Recently, accumulating evidence has proven the advance of optical mapping in studies of atrial electrophysiology and pathology.2 However, novel and rigorous studies are dependent on the accurate interpretation of experimental data, whose validity and stability rely on careful experiment protocols. Genetically modified mice are extensively used for research as animal models of human diseases including sick sinus syndrome, pacemaker abnormalities and atrial arrhythmias.6,8-11 Thus, a combination of fluorescent optical mapping with transgenic mouse models provides a powerful tool to study cardiac electrical abnormalities associated with various pathologies. In this paper, we present a protocol for high-resolution optical mapping of the mouse SAN and atrium. Specifically, we discuss and compare different dye loading approaches, time effects on dye bleaching and heart rate stability during the experiment.
All experiments were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Pub. No. 80-23). All methods and protocols used in these studies have been approved by The University of Wisconsin Animal Care and Use Protocol Committee following the Guidelines for Care and Use of Laboratory Animals published by NIH (publication No. 85-23, revised 1996). All animals used in this study received humane care in compliance with the Guide for the Care and Use of Laboratory Animals.
1. Heart Removal and Langendorff Perfusion
2. Optical Mapping of the SAN from the Langendorff-perfused Whole Heart
3. Optical mapping of the SAN from the Isolated Atrial Preparation
4. Optical Mapping Set Up
NOTE: A detailed description of the optical mapping system is provided elsewhere.12
5. Data Processing
NOTE: Optical mapping data is collected and stored as a series of matrices of fluorescent intensity at different time points. Each pixel represents a measure of fluorescent intensity collected from a specific location on the tissue preparation at a specific time point. Background fluorescence is automatically removed per pixel to allow for better visualization of fluorescence changes produced by membrane voltage changes and inverted to correspond with action potentials (APs) measured by microelectrode systems. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in the focused review.15
Optical Mapping of the Intact SAN from the Langendorff-perfused Heart
A typical example of an RA activation contour map reconstructed for spontaneous sinus rhythm is shown in Figure 3 for a Langendorff-perfused mouse heart. The early activation point is located within the intercaval region near the SVC where the SAN is anatomically defined.3,16 Two RA activation contour maps acquired at 1.0 and 0.5 msec sampling rate are shown in ...
Here, we presented two types of mouse SAN preparations: 1) intact SAN in the Langendorff-perfused whole heart, and 2) SAN in the isolated, opened atrial preparation. These two types of preparation serve different experimental purposes. In the Langendorff-perfused whole heart preparation, the intact atrial structure is preserved which makes it possible to study complex atrial arrhythmias such as atrial fibrillation as well as interactions between the SAN and atrium during reentrant tachyarrhythmias.6 In contras...
No conflicts of interest are declared.
We are supported by the University of Wisconsin-Madison Medical School start-up (A.V.G.).
Name | Company | Catalog Number | Comments |
water jacket | Radnoti | 1660 Series Tissue Bath for Large Organ or Single Cell Isolation Procedures | |
water bath / circulator | Fisher Scientific | 1016S | |
pressure amplifier | AD Instruments | MLT0670 | |
EMD Millipore Nylon Net Filters | Fisher Scientific | NY1102500 | |
Pressure transducer | AD Instruments | MLT0670 | |
Stainless Steel Minutien Pins - 0.1mm Diameter | Fine Science Tools | 26002-10 | |
Perfusion pump | World Precision Instruments | PERIPRO-4LS | |
Superfusion pump | World Precision Instruments | PERIPRO-4HS | |
Vannas Tubingen scissors | World Precision Instruments | 503379 | |
Dumont forceps | World Precision Instruments | 501201, 500085 | |
Mayo scissors | World Precision Instruments | 501750 | |
Kelly hemostatic forceps | World Precision Instruments | 501241 | |
Iris forceps | World Precision Instruments | 15917 | |
Iris scissors | World Precision Instruments | 501263 | |
ECG 12 mm needle (29-gauge) electrodes (monopolar) | AD Instruments | MLA1203 | |
in-line Luer injection port | Ibidi | 10820 | |
Ultima-L CMOS camera | SciMedia | MiCAM-05 | |
halogen lamp | Moritex USA Inc | MHAB-150W | |
NaCl | Fisher Scientific | S271-1 | |
CaCl2 (2H2O) | Fisher Scientific | C79-500 | |
KCl | Fisher Scientific | S217-500 | |
MgCl2 (6H2O) | Fisher Scientific | M33-500 | |
NaH2PO4 (H2O) | Fisher Scientific | S369-500 | |
NaHCO3 | Fisher Scientific | S233-3 | |
D-Glucose | Fisher Scientific | D16-1 | |
Blebbistatin | Tocris Bioscience | 1760 | |
RH237 | ThermoFisher Scientific | S1109 | |
Dimethyl sulphoxide (DMSO) | Sigma-Aldrich | D2650 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved