A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We developed a methodology for quantitative 3D in silico modeling (q3DISM) of cerebral amyloid-β (Aβ) phagocytosis by mononuclear phagocytes in rodent models of Alzheimer's disease. This method can be generalized for the quantitation of virtually any phagocytic event in vivo.
Neuroinflammation is now recognized as a major etiological factor in neurodegenerative disease. Mononuclear phagocytes are innate immune cells responsible for phagocytosis and clearance of debris and detritus. These cells include CNS-resident macrophages known as microglia, and mononuclear phagocytes infiltrating from the periphery. Light microscopy has generally been used to visualize phagocytosis in rodent or human brain specimens. However, qualitative methods have not provided definitive evidence of in vivo phagocytosis. Here, we describe quantitative 3D in silico modeling (q3DISM), a robust method allowing for true 3D quantitation of amyloid-β (Aβ) phagocytosis by mononuclear phagocytes in rodent Alzheimer's Disease (AD) models. The method involves fluorescently visualizing Aβ encapsulated within phagolysosomes in rodent brain sections. Large z-dimensional confocal datasets are then 3D reconstructed for quantitation of Aβ spatially colocalized within the phagolysosome. We demonstrate the successful application of q3DISM to mouse and rat brains, but this methodology can be extended to virtually any phagocytic event in any tissue.
Alzheimer's Disease (AD), the most common age-related dementia1, is characterized by cerebral amyloid-β (Aβ) accumulation as "senile" β-amyloid plaques, chronic low-level neuroinflammation, tauopathy, neuronal loss, and cognitive disturbance2. In AD patient brains, neuroinflammation is earmarked by reactive astrocytes and mononuclear phagocytes (referred to as microglia, although their central vs. peripheral origin remains unclear) surrounding Aβ deposits3. As the innate immune sentinels of the CNS, microglia are centrally positioned to clear brain Aβ. However, microglial recruitment to Aβ plaques is accompanied by very little, if any, Aβ phagocytosis4,5. One hypothesis is that microglia are initially neuroprotective by phagocytozing small assemblies of Aβ. However, eventually these cells become neurotoxic as overwhelming Aβ burden and/or age-related functional decline, provokes microglia into a dysfunctional proinflammatory phenotype, contributing to neurotoxicity and cognitive decline6.
Recent Genome-wide Association Studies (GWAS) have identified a cluster of AD risk alleles belonging to core innate immune pathways7 that modulate phagocytosis8-11. Consequently, the immune response to cerebral amyloid deposition has become a major area of interest, both in terms of understanding AD etiology and for developing new therapeutic approaches12-14. Yet, there is a vital need for methodology to evaluate Aβ phagocytosis in vivo. To address this unmet need, we have developed quantitative 3D in silico modeling (q3DISM) to enable true 3D quantitation of cerebral Aβ phagocytosis by mononuclear phagocytes in rodent models of Alzheimer-like disease.
Limited only by the extent to which they recapitulate disease, animal models have proven invaluable for understanding AD pathoetiology and for evaluating experimental therapeutics. Owing to the fact that mutations in the Presenilin (PS) and Amyloid Precursor Protein (APP) genes independently cause autosomal dominant AD, these mutant transgenes have been extensively used to generate transgenic rodent models. Transgenic APP/PS1 mice simultaneously coexpressing "Swedish" mutant human APP (APPswe) and Δ exon 9 mutant human presenilin 1 (PS1ΔE9) present with accelerated cerebral amyloidosis and neuroinflammation15,16. Further, we have generated bi-transgenic rats coinjected with APPswe and PS1ΔE9 constructs (line TgF344-AD, on a Fischer 344 background). Unlike transgenic mouse models of cerebral amyloidosis, TgF344-AD rats develop cerebral amyloid that precedes tauopathy, apoptotic loss of neurons, and behavioral impairment17.
In this report, we describe a protocol for immunostaining microglia, phagolysosomes and Aβ deposits in brain sections from APP/PS1 mice and TgF344-AD rats, and acquisition of large z-dimensional confocal images. We detail in silico generation and analysis of true 3D reconstructions from confocal datasets allowing quantitation of Aβ uptake into microglial phagolysosomes. More broadly, the methodology that we detail here can be used to quantify virtually any form of phagocytosis in vivo.
Statement of research ethics: All experiments involving animals detailed herein were approved by the University of Southern California Institutional Animal Care and Use Committee (IACUC) and performed in strict accordance with National Institutes of Health guidelines and recommendations from the Association for Assessment and Accreditation of Laboratory Animal Care International.
1. Rodent Brain Isolation and Preparation for Immunostaining
DAY 1:
DAY 2:
DAY 3:
2. Immunostaining
Note: Different combinations of antibodies can be utilized for the staining procedure described below. Antibody cocktails compatible with brain tissue from rats and mice are listed in Table 1.
DAY 4:
DAY 5:
DAY 6 - 7:
DAY 7 - 8:
3. Acquisition of Large Z-stack Confocal Datasets
Note: This protocol requires a fully automated laser scanning confocal microscope equipped with a 60X objective and 405 nm, 488 nm, 594 nm, and 647 nm lasers. All equipment is computer controlled by imaging and laser control software. Prior to beginning the imaging protocol, power on the computer, epifluorescent lamp, microscope, lasers and camera.
DAY 9:
4. q3DISM
Note: In order to yield significant results, we suggest analyzing a minimum of 3 images per animal/region of interest. For each image, the abundance of cells to analyze may vary depending on experimental paradigms. In the representative results shown in this report, we analyzed 3 cells/condition (e.g., mononuclear phagocytes distant from or associated with plaques; see Figures 1C - D and 2C - D).
DAY 10:
Using the multi-stage methodology for q3DISM detailed above, we are able to quantify Aβ uptake into monocyte phagolysosomes in the brains of APP/PS1 mice (Figure 1) and TgF344-AD rats (Figure 2). Therefore, the q3DISM methodology has enabled analysis of mononuclear phagocytes in mouse and rat models of AD. Interestingly, the volume occupied by CD68+ phagolysosomes is significantly increased in Iba1+ mononuclear phagocytes associ...
The protocol that we describe in this report for true 3D quantitation of Aβ phagocytosis in vivo by mononuclear phagocytes relies on specific labeling of cellular and subcellular compartments as well as Aβ deposits. Specifically, we use Iba1 (Ionized-calcium Binding Adaptor molecule 1), a protein that is involved in membrane ruffling and phagocytosis upon cell activation18,19, to stain cerebral mononuclear phagocytes. While Iba1+ cells are generally regarded ...
The authors have nothing to disclose.
M-V.G-S. is supported by a BrightFocus Foundation Alzheimer's Disease Research Fellowship Award (A2015309F) and an Alzheimer's Association, California Southland Chapter Young Investigator Award. T.M.W. is supported by an ARCS Foundation and John Douglas French Alzheimer's Foundation Maggie McKnight Russell-JDFAF Memorial Postdoctoral Fellowship. This work was supported by the National Institute on Neurologic Disorders and Stroke (1R01NS076794-01, to T.T.), an Alzheimer's Association Zenith Fellows Award (ZEN-10-174633, to T.T.), and an American Federation of Aging Research/Ellison Medical Foundation Julie Martin Mid-Career Award in Aging Research (M11472, to T.T.). We are grateful for startup funds from the Zilkha Neurogenetic Institute, which helped to make this work possible.
Name | Company | Catalog Number | Comments |
Isoflurane | Abbott | NDC 0044-5260-05 | |
Dissecting scissors | VWR | 82027-582 | |
Dissecting scissors Blunt tip | VWR | 82027-588 | |
Tweezers | VWR | 94024-408 | |
23 G needle | VWR | BD305145 | |
peristaltic pump FH10 | Thermo Scientific | 72-310-010 | |
PBS 10x | Bioland Scientific | PBS01-02 | Phosphate-buffered Saline; Working concentration 1x |
Adult Mouse Brain Matrix, Coronal slices, Stainless Steel 1 mm | Kent Scientific | RBMS-200C | |
Adult Rat Brain Matrix, Coronal slices, Stainless Steel 1 mm | Kent Scientific | RBMS-305C | |
32% Paraformaldehyde aqueous solution (PFA) | EMS | 15714-S | Caution: Toxic. Working concentration: 4% in PBS |
Ethanol | VWR | 89125-188 | Various concentrations, see protocol |
Tissue-Tek Uni-cassettes Sakura | VWR | 25608-774 | |
Embedding and Infiltration Paraffin | VWR | 15147-839 | |
Microtome Leica RM2125 | Leica Biosystems | ||
Disposable Microtome Blades | VWR | 25608-964 | |
Water bath Leica HI 1210 | Leica Biosystems | ||
Micro slide Superfrost plus | VWR | 48311-703 | |
Xylene | Sigma-Aldrich | 534056-4X4L | Caution: Toxic |
Target Retrieval Solution 10x | DAKO | S1699 | Working concentration 1x |
KimWipes | VWR | 21905-026 | |
Hydrophobic PAP pen | VWR | 95025-252 | |
Triton X-100 | VWR | 97062-208 | |
Normal Donkey Serum (NDS) | Jackson Immuno | 017-000-121 | |
Coverslips | VWR | 48393081 | |
Prolong Gold antifade reagent with DAPI | Life Technologies | P36935 | |
Glass Slide Rack | VWR | 100492-942 | |
Iba1 antibody (polyclonal, rabbit) | Wako | 019-19741 | Working concentration 1:200 |
Iba1 antibody (polyclonal, goat) | LifeSpan Bioscience | LS-B2645 | Working concentration 1:200 |
rat CD68 [KP1] antibody (monoclonal, mouse) | Abcam | ab955 | Working concentration 1:200 |
mouse CD68 [FA-11] antibody (monoclonal, rat) | Abcam | ab53444 | Working concentration 1:200 |
mouse CD107a (LAMP1) antibody (monoclonal, rat) | Affymetrix | 14-1071 | Working concentration 1:100 |
Beta-Amyloid, 17 - 24 (4G8) antibody (monoclonal, mouse) | Covance | SIG-39220 | Working concentration 1:200 |
Beta-Amyloid, 1 - 16 (6E10) antibody (monoclonal, mouse) | Covance | SIG-39320 | Working concentration 1:200 |
OC antibody (polyclonal, rabbit) | Gifted by D. H. Cribbs and C. G. Glabe (UC Irvine) | Working concentration 1:200 | |
Alexa Fluor 488 mouse secondary antibody | Invitrogen | A-11001 | Working concentration 1:1,000 |
Alexa Fluor 488 rat secondary antibody | Invitrogen | A-11006 | Working concentration 1:1,000 |
Alexa Fluor 594 rabbit secondary antibody | Invitrogen | A-11037 | Working concentration 1:1,000 |
Alexa Fluor 594 goat secondary antibody | Invitrogen | A-11080 | Working concentration 1:1,000 |
Alexa Fluor 647 mouse secondary antibody | Invitrogen | A-21235 | Working concentration 1:1,000 |
Alexa Fluor 647 rabbit secondary antibody | Invitrogen | A-21443 | Working concentration 1:1,000 |
Immersion oil | Nikon | ||
A1 Confocal microscope | Nikon | ||
NIS Elements Advanced Research software | Nikon | ||
Imaris:Bitplane software version 7.6 | Bitplane | "coloc" and "supass" modules are used. Alternatively, the open-source freeware ImageJ can be used for colocalization analysis of confocal z-stacks datasets. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved