A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, optimized methods to generate in vivo and in vitro models of hepatic steatosis and to analyze the steatotic phenotypes and related physiological parameters are described.
Establishing a system of procedures to qualitatively and quantitatively characterize in vivo and in vitro hepatic steatosis is important for metabolic study in the liver. Here, numerous assays are described to comprehensively measure the phenotype and parameters of hepatic steatosis in mouse and hepatocyte models.
Combining the physiological, histological, and biochemical methods, this system can be used to assess the progress of hepatic steatosis. In vivo, the measurements of body weight and nuclear magnetic resonance (NMR) provide a general understanding of mice in a non-invasive manner. Hematoxylin and Eosin (H&E) and Oil Red O staining determine the histological morphology and lipid deposition of liver tissue under nutrient overload conditions, such as high-fat diet feeding. Next, the total lipid contents are isolated by chloroform/methanol extraction, which are followed by a biochemical analysis for triglyceride and cholesterol. Moreover, mouse primary hepatocytes are treated with high glucose plus insulin to stimulate lipid accumulation, an efficient in vitro model to mimic diet-induced hyperglycemia and hyperinsulinemia in vivo. Then, the lipid deposition is measured by Oil Red O staining and chloroform/methanol extraction. Oil Red O staining determines intuitive hepatic steatotic phenotypes, while the lipid extraction analysis determines the parameters that can be analyzed statistically. The present protocols are of interest to scientists in the fields of fatty liver diseases, insulin resistance, and type 2 diabetes.
Obesity is a burgeoning health problem in developed and developing countries. It has been reported to be one of the coexisting conditions frequently associated with nonalcoholic fatty liver disease (NAFLD), with a prevalence ranging between 30 and 100 percent in NAFLD patients1. Due to the strong correlation between fatty liver and obesity, diet-induced obese (DIO) mouse models are widely used to study the complex molecular mechanisms associated with the development of NAFLD2,3,4,5,6. Hepatic steatosis is the earliest stage of NAFLD, and it can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, and ultimately, liver cancer7. Therefore, the overall goal of this method is to generate animal and cell models of hepatic steatotic conditions and to provide detailed protocols for efficient and accurate lipid measurement. These models and measurements are also useful for the investigation of other metabolic disorders, such as insulin resistance and type 2 diabetes.
As obesity is identified to be one of the key risk factors for NAFLD, a high-fat, high-sucrose diet (HFHS) that imitates the Western-style high-fat diet is used to induce obesity in mice. Subsequently, the degree of hepatic steatosis can be assessed using different methods. First, body weight and body composition analysis with nuclear magnetic resonance (NMR) show the lipid accumulation during feeding time. The fat mass and lean mass can be quantified in a non-invasive and real-time manner.
In addition, magnetic resonance imaging (MRI) is used to show both the whole-body and the liver distribution of fat. The grayscale signal of the MRI analysis can be converted into a legible pseudo-color image, and the intensity of the grayscale and color is hemi-quantifiable. This technology provides unique advantages for the measurement of lipid accumulation in live animals. Second, histological analysis of the liver is the most commonly used method to determine hepatic steatosis. Hematoxylin and Eosin (H&E) staining provides histological information, such as hepatocyte morphology and macrophage infiltration, while Oil Red O staining shows the size and position of the lipid droplets in hepatocytes. Third, the lipid content analysis using chloroform/methanol extraction is an accurate and quantitative measurement of hepatic lipids. Total triglyceride and cholesterol levels can be measured with biochemical methods. Importantly, lipid extraction analysis and Oil Red O staining can also be used in genetically manipulated or pharmaceutically treated hepatocytes.
The advantage of the present method is its utilization of multiple optimized approaches to generate hepatic steatotic models and to comprehensively characterize the phenotypes both in vivo and in vitro. The DIO mouse models can recapitulate the pathology and metabolic phenotypes of human fatty liver disease. Other metabolic parameters in humans can be replicated in this model as well8. The generation of the steatotic hepatocyte model in response to high glucose plus insulin is efficient, useful, and overcomes the limitation of costly and time consuming mouse work. Taken together, these methods are sufficient and essential for the study of hepatic lipid dysfunction and insulin resistance during nutrient overloading.
All animal experimental protocols were approved by the institutional animal care and use committee at the Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (Shanghai, China).
1. DIO Mouse Model
2. Primary Mouse Hepatocyte Model
As shown in Figure 1A, the mouse body weight was increased to 45±1.2 g after 16 weeks of HFHS feeding, which is approximately 1.5-fold higher than chow diet feeding group. The NMR body composition analyses showing the fat mass and lean mass of mice are indicated (Figure 1B). The fat distributions of the whole body and of the liver were determined by MRI, and representative pseudo-color images in live, conscious mice are shown in Figure 1C-D
NAFLD is a series of progressive liver diseases that is associated with metabolic syndrome, obesity, insulin resistance, or type 2 diabetes mellitus (T2DM)11. The hallmark of NAFLD is steatosis, the accumulation of lipid in hepatocytes. Here, a spectrum of methods is presented to characterize the phenotypes and parameters of hepatic steatosis using DIO mice and mouse primary hepatocytes. This procedure could be helpful to elucidate the molecular mechanisms of NAFLD and other related metabolic dise...
The authors declare that they have no competing financial interests.
Funding: This work was supported by grants from the National Natural Science Foundation of China (No. 81270930, 31471129, and 31671224) and the Hundred Talents Program of the Chinese Academy of Sciences (2013OHTP04) to Y.L.
We appreciate Feifei Zhang for the helpful discussions. We are grateful to Jing Gao and Yixuan Sun for the technical assistance and to Zhengshuai Liu and Fengguang Ma for the animal studies.
Name | Company | Catalog Number | Comments |
O.C.T compound | SAKURA | 4583 | |
Oil Red O | Sigma | O0625-25G | |
Infinity Triglycerides kit | Fisher Scientific | TR22421 | |
Infinity Cholesterol kit | Fisher Scientific | TR13421 | |
Collagen type I, Rat tail | Millipore | 08-115 | |
DMEM (low glucose) | Invitrogen | 11885-092 | |
Penicillin / Streptomycin | Invitrogen | 15140-122 | |
FBS | Invitrogen | 10099141 | |
PBS | cellgro | R21-040-CVR | |
HBSS | cellgro | 20-021-CV | |
Insulin | TOCRIS Bioscience | 3435 | dissolve in PBS, 1 mM for stock |
Glucose | Sigma | G8270-100G | |
Microscope | Olympus | BX53 | |
Peristaltic pump | Longerpump | BT100-2J | |
10 cm cell culture dish | Corning | 420167 | |
6-well-plate | Corning | 3516 | |
BCA assay | Beyotime | P0010 | |
Nuclear Magnetic Resonance | Niumag technology | MiniQMR23-060H-I | |
High fat high surcose diet (HFHS) | Research Diets | D12327 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved