A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
In the heart, molecular events coordinate the electrical and contractile function of the organ. A set of local field fluorescence microscopy techniques presented here enables the recording of cellular variables in intact hearts. Identifying mechanisms defining the cardiac function is critical in understanding how the heart works under pathological situations.
In the heart, molecular signaling studies are usually performed in isolated myocytes. However, many pathological situations such as ischemia and arrhythmias can only be fully understood at the whole organ level. Here, we present the spectroscopic technique of local field fluorescence microscopy (LFFM) that allows the measurement of cellular signals in the intact heart. The technique is based on a combination of a Langendorff perfused heart and optical fibers to record fluorescent signals. LFFM has various applications in the field of cardiovascular physiology to study the heart under normal and pathological conditions. Multiple cardiac variables can be monitored using different fluorescent indicators. These include cytosolic [Ca2+], intra-sarcoplasmic reticulum [Ca2+] and membrane potentials. The exogenous fluorescent probes are excited and the emitted fluorescence detected with three different arrangements of LFFM epifluorescence techniques presented in this paper. The central differences among these techniques are the type of light source used for excitation and on the way the excitation light is modulated. The pulsed LFFM (PLFFM) uses laser light pulses while continuous wave LFFM (CLFFM) uses continuous laser light for excitation. Finally, light-emitting diodes (LEDs) were used as a third light source. This non-coherent arrangement is called pulsed LED fluorescence microscopy (PLEDFM).
The heart is the central organ of the cardiovascular system. The heart's contraction is initiated by an increase in intracellular [Ca2+]. The relationship between electrical excitability and changes in intracellular Ca2+ release has been historically studied in enzymatically dissociated cells1,2. However, cardiac cells are electrically, metabolically and mechanically coupled3,4. When isolated, the myocytes are not only physically uncoupled, but myocytes from different layers are mixed during the dissociation5. Furthermore, despite the enormous advantages that have emerged from the study of isolated cells under voltage clamp conditions,6,7,8 the intrinsic nature of the heart as an electrical syncytium always poses the question of how functionally different are dissociated cells from those present in the tissue3.
In this manuscript, we describe the advances obtained in the knowledge of cardiac physiology by the use of local field fluorescence microscopy (LFFM) techniques in the intact heart. LFFM uses fluorescent indicators to measure multiple physiological variables such as cytosolic Ca2+, intra sarcoplasmic reticulum (SR) Ca2+ and membrane potential. These measurements can be obtained simultaneously and in conjunction with ventricular pressure9,10, electrocardiograms9, electrical action potentials (APs), ionic current recordings and flash photolysis of caged compounds4,11. In addition, these measurements can be obtained by pacing the intact heart at higher frequencies closer to physiological rates. Although several articles9,11,12,13,14 have been published by our group using LFFM techniques, the presumption of technical complexities associated with this technique has prevented its massive use in studying ex vivo physiological phenomena in the heart and other organs.
The LFFM technique (Figure 1) is based on epifluorescence measurements obtained using a multimode optical fiber in contact with the tissue. Like any contact fluorescence imaging technique, the optical resolution depends on the diameter and the numerical aperture (NA) of the fiber. A higher NA and smaller diameter of the fiber will increase the spatial resolution of the measurements. NAs and fiber diameters can range from 0.22 to 0.66 and from 50 µm to 1 mm, respectively. Increasing the NA will improve the signal to noise ratio (S/N) by accepting photons arriving from a larger solid angle. In order to act as an epifluorescence device, the light beam is focused into the optical fiber with an aspheric lens or an epifluorescence objective where the NA of the lens and the fiber match. This matching maximizes the energy transfer for excitation and for collecting back the photons emitted by the fluorophore.
In order to excite the exogenous fluorescent indicators loaded in the tissue, different light sources and illumination modes can be utilized. Our pioneering studies using the pulsed local field fluorescence microscopy3,12 (PLFFM) employed a low-cost picosecond laser (Figure 1a, PLFFM). This type of light source has the huge advantage of exciting a big fraction of fluorophore molecules under the illumination area without substantially bleaching the dye due to the short pulse durations12. Additionally, the use of ultrashort pulses allowed the assessment of the fluorescence lifetime of the dye12. The fluorescence lifetime is a property that can be used to quantify the fraction of dye molecules bound to Ca2+. Unfortunately, the temporal jittering of the pulses and variations in amplitude from pulse-to-pulse limit the application of this experimental strategy to cases where the change in fluorescence produced by the ligand binding to the dye is large.
Continuous Wave (CW) lasers are usually used as the main illumination source in LFFM (Figure 1b, CLFFM). The laser beam can continuously illuminate the tissue or can be ferroelectrically modulated. The ferroelectric modulation of the beam allows the generation of microsecond pulses of light. This modulation can be controlled by external hardware. This procedure not only dramatically reduces the temporal jittering of light pulses but also allows mixing beams of different wavelengths. The mixing of beams is done by multiplexing rays from different lasers. As a consequence, multiple dyes having different spectral properties can be excited to perform measurements of a variety of physiological variables, for example, Rhod-2 for cytosolic Ca2+, MagFluo4 for intra-SR Ca2+ and di-8-ANEPPS for membrane potential.
Although lasers present various advantages as the light source in LFFM, other types of light sources can be used including light-emitting diodes (LEDs). In this case, the excitation light source consisted of an InGaN LED (Figure 1c, PLEDFM). In LEDs, photons are spontaneously emitted when electrons from the conduction band recombine with holes in the valence band. The difference with solid-state lasers is that the emission is not stimulated by other photons. This results in a non-coherent beam and a wider spectral emission for LEDs.
Different types of high power LEDs can be used. For AP recordings using Di-8-ANEPPS and for Ca2+ transients recorded using Fluo-4 or Mag-Fluo-4, we used an LED that has a typical peak emission at 485 nm (blue) and a half width of 20 nm (Figure 1d). For Ca2+ transients recorded with Rhod-2, the LED had a typical peak emission at 540 nm (green) and a half width of 35 nm (Figure 1d). LEDs emit in a band wavelength and therefore require filters to narrow their spectral emission. In addition, pulsed light can be generated at a rate of 1.6 kHz with duration of 20 µs. The LEDS were pulsed with a fast power MOSFET field effect transistor. Simultaneous recordings with different indicators can be performed by time-multiplexing the LEDs. Unfortunately, light emitted by LEDs is more difficult to focus onto a fiber optic compared to a laser beam. Thus, the main drawback of using LEDs is that their emission profiles have angular displacements (± 15°) from the main axis, and an auxiliary optic must be used to correct it.
In all of the optical configurations previously described, the excitation light is reflected with the aid of a dichroic mirror. The beam is subsequently focused by an aspheric lens and a microscope objective onto a multimode fiber optic that is positioned on the tissue. As in any epifluorescence arrangement, the dichroic mirror also serves to separate the excitation from the emitted light. The emitted light spectrum travels back through a barrier filter to remove any reflected excitation. Finally, the emitted light is focused with an objective onto a photodetector (Figure 1).
The transduction from light to electrical current is performed by silicon avalanche photodiodes. These diodes have a fast response and a high sensitivity allowing low light detection. The photocurrent produced by the avalanche photodiodes can be amplified in two ways: a transimpedance amplifier having a resistive feedback element (Figure 1e) or by an integrator to convert the current into a voltage (Figure 1f). Using the first approach, the output voltage is proportional to the photocurrent and the feedback resistor. A typical example of the resistive detection of picosecond laser pulses is shown in Figures 2a, 2b and 2c. Panel 2a illustrates the output of the transimpedance amplifier and panel 2b shows a time expansion of the interval indicated with an asterisk (*). A peak tracking algorithm was implemented to detect the peak (red) and the base (green) for the fluorescent responses12. The measurement of the base fluorescence provides information of both the dark current of the avalanche photodiode and the interferences introduced by ambient light and electromagnetic coupling. A representation of peaks and bases is shown in Figure 2c. This figure illustrates the fluorescence emitted by the dye (Rhod-2) bound to Ca2+ during the cardiac cycle of a beating parakeet heart.
In the second method, the output voltage of the integrator is a function of the current and capacitive feedback (Figures 2d, 2e, and 2f). Figure 2f shows two consecutive integration cycles: the first with no external illumination and the second with applied light pulses from a pulsed LED. A detailed description is presented in Figures 2g and 2h. This approach, although more laborious, provides a larger S/N due to the absence of thermal noise in the feedback capacitor. The instrument includes a timing stage that generates all the control and multiplexing of the excitation light and commands the headstage integration and reset periods. This is usually performed with a digital signal processing circuit that also performs a digital differentiation of the integrated output signal by computing an on-line regression of the data. In the case of using a resistive feedback, any A/D acquisition board can be used.
Finally, our LFFM technique is highly versatile and can be adapted to record from more than one region. Adding a beam splitter in the light path allows us to split the light into two optical fibers. Each optical fiber can then be placed on different regions of a tissue to, independently, excite and record emission from the exogenous fluorescent probes. This modification permits us to assess how anatomical regional differences influence physiological variables. Figure 3 shows a beam splitter being employed to split the CW excitation light such that two optical fibers are used to measure transmural electrical or intracellular [Ca2+] levels with minor-invasiveness. Transmural signals can be recorded by placing one fiber on the endocardium and the other on the epicardium layer of the ventricular wall. Therefore, the LFFM technique has the ability to measure the time course of cellular signals in different regions and can be used to test if regional changes occur under pathological situations.
This protocol and all mice handling was approved by the UC Merced Institutional Animal Care and Use Committee (No. 2008-201). Experiments with parakeets were conducted in 1999 according to general policies for animal use established by the scientific commission of the Venezuelan Institute for Scientific Research (IVIC).
1. Langendorff Set Up Preparation
2. Animal Preparation and Heart Dissection
3. Cytosolic Ca2+ Measurements: Preparing Dye Rhod-2AM
4. Intra-SR Ca2+ Measurements: Preparing Dye Mag-Fluo4AM
5. Membrane Potential Measurements: Preparing Dye Di-8-ANEPPS
6 . Recording Epicardial Signals
7 . Recording Endocardial Signals
AP and Ca2+ transients in endocardium and epicardium
In order to compare signals across the ventricular wall, one fiber optic is positioned in the endocardium and the other in the epicardium. Comparing the morphology of an AP recorded from the endocardium with one from the epicardium is the best way to assess the transmural function. The ventricular wall is highly hetero...
This paper is centered in describing local field fluorescence techniques to evaluate the function of cardiac myocytes ex vivo. The study of these cells in a coupled environment is not only more physiological, but is also highly appropriate for assessing organ-level pathologies. The cellular events underlying excitation-contraction coupling (ECC) can be evaluated at the whole organ level with the use of molecular probes that monitor intracellular Ca2+ dynamics (Rhod 2 cytosolic Ca2+, ...
The authors have nothing to disclose.
We thank Dr. Alicia Mattiazzi for critical discussion of the presented work. This work was supported by a grant from NIH (R01 HL-084487) to ALE.
Name | Company | Catalog Number | Comments |
Sodium chloride | Sigma | 7647-14-5 | |
D-(+)-glucose | Sigma | 50-99-7 | |
Potassium chloride | Sigma | 7447-40-7 | |
HEPES | Sigma | 7365-45-9 | |
Sodium phosphate | Sigma | 10049-21-5 | |
Calcium chloride solution | Sigma | 10043-52-4 | |
Magnesium chloride solution | Sigma | 7786-30-3 | |
Sodium hyrdoxide | Sigma | S-8045 | |
0.2 μm nylon membrane filter | Whatman | 7402-004 | |
Manifold MPP | Warner | 64-0216 | |
21G1.5 Precision glide needle | B-D | 305167 | |
Black Braided silk string (non-absorbable surgical suture) | AllMech Tech | LOOK-SP105 | |
Heparin sodium injection 1000USP/mL | AllMech Tech | NDC63323-540-11 | |
DMSO D8779 | Sigma | 67-68-5 | |
Blebbistatin | Sigma | 856925-71-8 | |
Pluronic F-127 20% solution | Biotium | 59004 | |
Materflex C/L peristaltic pump | Cole-Parmer | 77122-26 | |
Isostim stimulator | World Precision Instruments | A320RC | |
Waveform generator | Teledyne Lecroy | WaveStation 2012 | |
Ultrasonic cleaner FS20 | Fisher Scientific | 1533530 | |
Tygon tubing ID:1/32" OD:3/32" Wall 1/32" | Component Supply | TET-031A | |
Tygon tubing ID:3/32" OD:5/32" Wall 1/32" | Component Supply | TET-094A | |
Adapter luer lock to 3-way valve | Cole-Parmer | EW-31200-80 | |
Tee adapters and plastic fittings | Cole-Parmer | 6365-90 | |
Plastic clamp | WaterZoo | 2465 | |
Peltier | TE Technology | TE-127-2.0-2.5 | |
Rhod-2AM | ThermoFisher Scientific | R1245MP | |
Di-8-ANEPPS | ThermoFisher Scientific | D3167 | |
Mag-Fluo-4AM | ThermoFisher Scientific | M14206 | |
Acupunture needles | LHASA | TC1.20x13 | |
60 mL BD syringe with luer-lok | Fisher Scientific | 14-820-11 | |
LabView | National Instruments | ||
Speed vacuum Eppendorf Vagufuge | Fisher Scientific | 07-748-13 | |
Digital signal processing circuit DSP TMS 320 | Texas Instrument | ||
Longpass Dichroic mirror 567 nm | ThorLabs | DMLP567L | |
Objective 10X NA 0.25 DIN AchromaticFinite Intl Standard Objective | Edmund Optics | Stock# 33-437 | |
Objective 20X NA 0.40 DIN Achromatic Finite Intl Standard Objective | Edmund Optics | Stock# 33-438 | |
Longpass colored glass filter 590 nm | ThorLabs | FGL590 | |
Green Nd-YAG laser 532 nm, 500 mW | |||
Micromanipulator for laser | Siskiyou | MX130R | |
Multimode fiber optic 200 µm NA 0.39 | ThorLabs | FT200UMT | |
LEDs blue | Lumileds | L135-B475003500000 | |
LEDs green | Lumileds | L135-G525003500000 | |
Cube beam splitter, non-polarizing | ThorLabs | BS007 | |
36" Length, Dovetail Optical Rail | Edmund Optics | 54-402 | |
2.5" Width, Dovetail Carrier | Edmund Optics | 54-404 | |
0.75" Travel, micrometer stage | Edmund Optics | 37-983 | |
Dovetail optical rail 3" | ThorLabs | RLA075/M | |
Dovetail rail carrier 1" | ThorLabs | RC1 | |
Avalanche photodiode Helix 902 | Digi-Key | HELIX-902-200 | |
Objective holder XY Translator | ThorLabs | ST1XY-S | |
Aluminum breadboard 6" x 6" | ThorLabs | MB6 | |
Nexus otpical table 4' x 6' | ThorLabs | T46HK | |
Stainless steel cap screws | ThorLabs | HW-KIT5/M | |
Acrylic sheet | Home Depot/Lowes | ||
Sylgard Silicone elastomer kit | Dow Corning | Sylgard 184 | |
Epoxy gel | Walmart/Home Depot | 2-part 5 min clr 1oz | |
21G1.5 Precision glide needle | B-D | 305167 | |
23G Precision glide needle | B-D | 305145 | |
Mounting base, 25 mm x 75 mm x 10 mm | ThorLabs | BA1/M | |
Wire shelve posts 36" | Alera | AALESW59PO36SR | |
Wire shelves | Alera | ALESW582424SR | |
Post and angle clamp | ThorLabs | SWC/M-P5 | |
Glass syringe for dye chamber | Wheaton | W851020 | |
Rubber stopper | Home Science Tools | CE-STOP01C |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved