JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biology

分析细胞表面粘附重塑回应机械张力使用磁珠

Published: March 8th, 2017

DOI:

10.3791/55330

1Institute for Advanced Biosciences, Centre de recherche UGA - INSERM U1209 - CNRS UMR
* These authors contributed equally

细胞表面粘连是在机械传导的中心,因为它们传输机械张力,并开始参与组织稳态和发展的信号通路。这里,我们提出了解剖被响应于张力激活生化途径,使用包被配体 - 磁珠和施力到粘附受体的协议。

机械敏感细胞表面粘附物使细胞感测与其周围环境的机械性能。最近的研究已经确定了在固定区域既力传感分子和调节谱系特异性基因表达和驱动表型输出力依赖性转录因子。然而,信令网络转换机械张力成生化途径仍然难以捉摸。探索时施加到细胞表面受体的机械张力接合的信号传导途径,可以使用超顺磁性微珠。在这里,我们提出了一个协议利用磁珠力量应用到细胞表面粘附蛋白。使用这种方法,可以通过安装在涂覆配体珠粘附复合物的磁隔离,调查通过各种生物化学方法不仅力依赖性细胞质信号传导途径,而且粘附重塑。这个协议包括配体 - 共聚的制备ated超顺磁珠,和应用程序中定义的拉力接着生物化学分析。此外,我们提供的数据表明应用于基于整合素的粘附张力的代表性样品触发粘附重塑和改变蛋白质的酪氨酸磷酸化。

在后生动物,机械张力通过细胞过程如增殖,分化和存活1,2无数的调节指导组织发育和内环境稳定。机械张力可以从细胞外基质产生,或可通过贴壁细胞,其样品通过拉动到细胞外基质,并通过张力敏感分子探测其刚性的肌动球蛋白收缩机械它们的胞外环境中产生的。为了应对紧张局势,机械敏感粘附蛋白发生触发复杂的信号级联反应的构象变化。反过来,这些信号传导途径编排一个mechanoresponse包含增殖,分化和存活是调节细胞行为到细胞外环境。这样的方法可以在短期时间周期进行结算(数秒至数分钟)快速反馈到机甲的环通过修改机械敏感结构notransduction。例如,基于整联粘连加强在通过的Rho GTP酶-介导的细胞骨架重构3,4,5响应于张力。与此同时,其他的信号通路超过几小时或几天来控制的遗传程序,最终影响细胞的命运6激活。然而,许多研究强调矩阵刚度对细胞确定性和疾病发展1,2的效果,粘附介导的机械传导的精确分子机制仍然不清楚。

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1.配体偶联磁珠

注意:使用超顺磁性甲苯磺酰基活化的珠用直径2.8微米,进行配体缀合(原液浓度10 8珠/毫升,30毫克珠粒/毫升)。以下协议是基于约2×10 5个细胞,这对应于在一个60mm组织培养板上生长至80%汇合MRC-5细胞的样品。相应地,如果使用不同大小或细胞的板在不同汇流调整的珠粒和试剂的体积。使用顺序的超顺磁珠的量具有每单元2珠。因此,需要用?.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

该技术的原理在图1a中示出。以下的配体缀合,磁珠与细胞孵育20分钟,然后一个永久磁铁用于施加约30-40 PN的拉伸力对各种量的时间。 图1b示出了2.8微米势必MRC5细胞粘附受体的FN包被的磁珠。

细胞裂解后的超顺磁珠洗涤步骤是关键的,并确定纯化的程度。建议三次洗涤最低。 GADPH免疫印迹与长时间曝光可以测试粘附复合物的纯度(图2a)是

Log in or to access full content. Learn more about your institution’s access to JoVE content here

此处所描述的方法构成,以施加张力到细胞表面粘附受体,并允许其随后的纯化一个简单的方法。然而,一些步骤是进行高效粘附纯化的和潜在的优化可以做取决于目标粘附受体的关键。我们目前的用户可能会遇到下面的潜在问题。

我们使用直径2.8微米的磁性珠粒但较大的小珠可用于直径如4.5微米。然而,珠子直径应限制在2-5微米自吞噬可能在30-60分钟温育发生更快速和更大.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

CG是由来自法新社法国国家(ANR-13-JSV1-0008),来自欧盟第七框架计划(居里夫人职业集成n˚8304162),由根据欧盟的地平线欧洲研究委员会(ERC)资助项目2020年研究和创新计划(ERC启动格兰特n˚639300)。

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
Neodymium magnets (on the upper face of 60 mm dish)K&J Magnetics, IncDX88-N52grade N52 dimension: 1 1/2" dia. x 1/2" thick
Neodymium magnets (on the lower face of 60 mm dish)K&J Magnetics, IncD84PC-BLKgrade N42 dimension: 1/2" dia. x 1/4" thick Black Plastic Coated 
Dynabeads M280 TosylactivatedThermofisher14203superparamagnetic beads 
DynaMag-2 MagnetThermofisher12321D
Fibronectin Sigma-AldrichF1141-5MGFibronectin from bovine plasma
Poly-D-LysineSigma-AldrichP7280-5MG
Apo-TransferrinSigma-AldrichT1428-50MGBovine Apo-Transferrin
Bovine serum albuminSigma-AldrichA7906-500G
DMEM high glucose, GlutaMAX supplement, pyruvate Life Technologies31966-021DMEM+GlutaMAX-I 500 ml 
60*15 mm culture dishFalcon353004

  1. Discher, D. E., Janmey, P., Wang, Y. -. L. . Tissue cells feel and respond to the stiffness of their substrate. 310 (5751), 1139-1143 (2005).
  2. DuFort, C. C., Paszek, M. J., Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol. 12 (5), 308-319 (2011).
  3. Guilluy, C., et al. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol. 13 (6), 722-727 (2011).
  4. Matthews, B. D., Overby, D. R., Mannix, R., Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci. 119 (3), 508-518 (2006).
  5. Zhao, X. -. H., et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci. 120 (Pt 10), 1801-1809 (2007).
  6. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell. 126 (4), 677-689 (2006).
  7. Austen, K., Kluger, C., Freikamp, A., Chrostek-Grashoff, A., Grashoff, C. Generation and analysis of biosensors to measure mechanical forces within cells. Meth Mol Biol. 1066, 169-184 (2013).
  8. Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 466 (7303), 263-266 (2010).
  9. Pelham, R. J., Wang, Y. l. . Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA. 94 (25), 13661-13665 (1997).
  10. Choquet, D., Felsenfeld, D. P., Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 88 (1), 39-48 (1997).
  11. Chaudhuri, O., Parekh, S. H., Lam, W. A., Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Meth. 6 (5), 383-387 (2009).
  12. Bays, J. L., et al. Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol. 205 (2), 251-263 (2014).
  13. Collins, C., et al. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr Biol. 22 (22), 2087-2094 (2012).
  14. Gordon, W. R., et al. Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch. Dev Cell. 33 (6), 729-736 (2015).
  15. Lessey-Morillon, E. C., et al. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. J Immunol. 192 (7), 3390-3398 (2014).
  16. Osborne, L. D., et al. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion. Mol Biol Cell. 25 (22), 3528-3540 (2014).
  17. Scott, D. W., Tolbert, C. E., Burridge, K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 27 (9), 1420-1430 (2016).
  18. Glogauer, M., Ferrier, J., McCulloch, C. A. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol - Cell Physiol. 269 (5), C1093-C1104 (1995).
  19. Glogauer, M., et al. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci. 110 (Pt 1), 11-21 (1997).
  20. Kuo, J. -. C., Han, X., Hsiao, C. -. T., Yates, J. R., Waterman, C. M. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol. 13 (4), 383-393 (2011).
  21. Schiller, H. B., et al. β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol. 15 (6), 625-636 (2013).
  22. Guilluy, C., et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 16 (4), 376-381 (2014).
  23. Plopper, G. E., McNamee, H. P., Dike, L. E., Bojanowski, K., Ingber, D. E. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 6 (10), 1349-1365 (1995).
  24. Roca-Cusachs, P., Gauthier, N. C., Del Rio, ., A, M. P., Sheetz, Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc Natl Acad Sci USA. 106 (38), 16245-16250 (2009).
  25. Ajeian, J. N., et al. Proteomic analysis of integrin-associated complexes from mesenchymal stem cells. Proteomics Clin Appl. 10 (1), 51-57 (2016).
  26. Horton, E. R., Astudillo, P., Humphries, M. J., Humphries, J. D. Mechanosensitivity of integrin adhesion complexes: Role of the consensus adhesome. Exp Cell Res. , (2015).
  27. Jones, M. C., et al. Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol. 66, 9.8.1-9.8.15 (2015).
  28. Ng, D. H. J., Humphries, J. D., Byron, A., Millon-Frémillon, A., Humphries, M. J. Microtubule-dependent modulation of adhesion complex composition. PloS One. 9 (12), e115213 (2014).
  29. Byron, A., Humphries, J. D., Bass, M. D., Knight, D., Humphries, M. J. Proteomic analysis of integrin adhesion complexes. Sci Sign. 4 (167), pt2 (2011).
  30. Byron, A., Humphries, J. D., Craig, S. E., Knight, D., Humphries, M. J. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics. 12 (13), 2107-2114 (2012).
  31. Marjoram, R. J., Guilluy, C., Burridge, K. Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods. , (2015).
  32. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D., Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol. 188 (6), 877-890 (2010).
  33. Sawada, Y., Sheetz, M. P. Force transduction by Triton cytoskeletons. J Cell Biol. 156 (4), 609-615 (2002).
  34. Grinnell, F., Geiger, B. Interaction of fibronectin-coated beads with attached and spread fibroblasts. Binding, phagocytosis, and cytoskeletal reorganization. Exp Cell Res. 162 (2), 449-461 (1986).
  35. Schroeder, F., Kinden, D. A. Measurement of phagocytosis using fluorescent latex beads. J Biochem Biophys Meth. 8 (1), 15-27 (1983).
  36. Hoffman, B. D., Grashoff, C., Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature. 475 (7356), 316-323 (2011).
  37. Seo, D., et al. A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. Cell. 165 (6), 1507-1518 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved