A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article presents a protocol optimized for the production of microfluidic chips and the setup of microfluidic experiments to measure the lifespan and cellular phenotypes of single yeast cells.
Budding yeast Saccharomyces cerevisiae is an important model organism in aging research. Genetic studies have revealed many genes with conserved effects on the lifespan across species. However, the molecular causes of aging and death remain elusive. To gain a systematic understanding of the molecular mechanisms underlying yeast aging, we need high-throughput methods to measure lifespan and to quantify various cellular and molecular phenotypes in single cells. Previously, we developed microfluidic devices to track budding yeast mother cells throughout their lifespan while flushing away newborn daughter cells. This article presents a method for preparing microfluidic chips and for setting up microfluidic experiments. Multiple channels can be used to simultaneously track cells under different conditions or from different yeast strains. A typical setup can track hundreds of cells per channel and allow for high-resolution microscope imaging throughout the lifespan of the cells. Our method also allows detailed characterization of the lifespan, molecular markers, cell morphology, and the cell cycle dynamics of single cells. In addition, our microfluidic device is able to trap a significant amount of fresh mother cells that can be identified by downstream image analysis, making it possible to measure the lifespan with higher accuracy.
Budding yeast is a powerful model organism in aging research. However, a conventional lifespan assay in yeast relies on microdissection, which is not only labor intensive but also low throughput1,2. In addition, the traditional microdissection approach does not provide a detailed view of various cellular and molecular features in the single mother cells as they age. The development of microfluidic devices has enabled an automated procedure to measure yeast lifespan as well as to follow molecular markers and various cellular phenotypes throughout the lifespan of the mother cells3,4,5,6,7,8. After yeast cells are loaded into a microfluidic device, they can be tracked under a microscope using automatic time-lapse imaging. With the help of imaging processing tools, various cellular and molecular phenotypes can be extracted3,6,8, including lifespan, size, fluorescent reporter, cell morphology, cell cycle dynamics, etc., many of which are difficult or impossible to obtain using the traditional microdissection method. Microfluidic devices have gained prominence in yeast aging research since their successful development a few years ago3,4,6,7. Several groups have subsequently published on variations of the earlier designs5, and many yeast labs have employed microfluidic devices for their study.
In a cell culture undergoing exponential growth, the number of aged mother cells that are available for observation is miniscule. Therefore, the general design principle of the microfluidic device for lifespan measurements is to retain mother cells and to remove daughter cells. One such designs makes use of the fact that yeast undergoes asymmetric cell division. The structures in the device will trap bigger mother cells and allow smaller daughter cells to be washed away. The microfluidic chip described in this article uses a soft polydimethylsiloxane (PDMS) pad (vertical pensile columns) to trap mother cells (Figure 1). Devices of similar design have been reported previously3,4,6,7. This protocol uses a simpler procedure to fabricate microfluidic devices and a straightforward cell-loading method that is optimized for the time-lapse imaging experiments. One of the key parameters in the microfluidic device is the width of the PDMS pads used to trap mother cells. Our device uses wider pads that can keep more mother cells under each pad, including a significant fraction of fresh mother cells that can be tracked throughout their lifespan. In addition to lifespan measurements, this protocol is useful for single cell time-lapse imaging experiments when the cells need to be tracked for many generations or when an observation throughout the entire lifespan is necessary.
1. Silicon Wafer Mold Fabrication
NOTE: The photomask is designed with AutoCAD software and manufactured by a commercial company. This design contains three layers of different patterns (Supplementary File 1). The heights of the first, second, and third layers are about 4 µm, 10 µm, and 50 µm, respectively. The silicon wafer mold was created from the photomask using soft lithography9,10.
2. Microfluidic Chip Fabrication
3. Preparing for the Experiment
After the experiments, the lifespans of the cells and many cellular and molecular phenotypes can be extracted from the recorded time-lapse images. Since there are a number of different features that can be extracted from each cell, the first step of the analysis is to annotate the cells and events, including the positions and boundaries of the cells and the timing of various events that are being tracked, such as the budding events. These annotations will make it easier to return to the s...
The PDMS device needs to be freshly made. Otherwise, the air bubbles caused by inserting tubes into the device will be difficult to remove. Step 3.4 is important to improve the cell loading efficiency by concentrating the cells. To increase the throughput of the experiment, 4 to 6 modules on the same PDMS chip connected to independently operating pumps are typically used to perform 4 to 6 different experiments (different strains or media compositions) simultaneously.
Compared to the convention...
The authors declare that they have no competing financial interests.
This research was supported by NIH Grant AG043080 and the National Natural Science Foundation of China (NSFC), No. 11434001. We thank Lucas Waldburger for proofreading the manuscript.
Name | Company | Catalog Number | Comments |
3'' <111> silicon wafer | Addison Engineering | ||
SU-8 2000 and 3000 Series | MicroChem | ||
Sylgard® 184 Silicone Elastomer Kit | ellsworth | 2065622 | Include Sylgard® silicone elastomer base and curing agent |
Petri dishes | VWR | 391-1502 | |
Harris Uni-core™ punch (I.D. 0.75 mm) | Sigma-Aldrich | 29002513 | |
24 mm x 40 mm SLIP-RITE® cover glass | Thermo Fisher Scientific | 102440 | |
3M Scotch Tape | ULINE | S-10223 | |
VWR® Razor Blades | VWR | 55411-050 | |
Pure Ethanol, Koptec | VWR | 64-17-5 | |
Whoosh-Duster™ | VWR | 16650-027 | |
5 mL BD Syringe (Luer-Lock™ Tip) | Becton, Dickinson and Company | 309646 | |
PTFE Standard Wall Tubing (100 ft, AWG Size: 22, Nominal ID: 0.028) | Component Supply Company | SWTT-22 | |
Needle Assortment | Component Supply Company | NEKIT-1 | |
Desiccator | HACH | 2238300 | |
Lab Oven | Fisher Scientific | 13246516GAQ | |
Nikon TE2000 microscope with 40X and 60X objective | Nikon | ||
Zeiss Axio Observer Z1 with 40X and 60X objective | Zeiss | ||
Syringe Pump | Longerpump | TS-1B |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved