A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The object recognition test (ORT) is a simple and efficient assay for evaluating learning and memory in mice. The methodology is described below.
The object recognition test (ORT) is a commonly used behavioral assay for the investigation of various aspects of learning and memory in mice. The ORT is fairly simple and can be completed over 3 days: habituation day, training day, and testing day. During training, the mouse is allowed to explore 2 identical objects. On test day, one of the training objects is replaced with a novel object. Because mice have an innate preference for novelty, if the mouse recognizes the familiar object, it will spend most of its time at the novel object. Due to this innate preference, there is no need for positive or negative reinforcement or long training schedules. Additionally, the ORT can also be modified for numerous applications. The retention interval can be shortened to examine short-term memory, or lengthened to probe long-term memory. Pharmacological intervention can be used at various times prior to training, after training, or prior to recall to investigate different phases of learning (i.e., acquisition, early or late consolidation, or recall). Overall, the ORT is a relatively low-stress, efficient test for memory in mice, and is appropriate for the detection of neuropsychological changes following pharmacological, biological, or genetic manipulations.
The object recognition test (ORT), also known as the novel object recognition test (NOR), is a relatively fast and efficient means for testing different phases of learning and memory in mice. It was originally described by Ennaceur and Delacour in 1988 and used primarily in rats1; however, since then, it has been successfully adapted for use in mice2,3,4,5,6,7. The test relies on as few as three sessions: one habituation session, one training session, and one test session. Training simply involves visual exploration of two identical objects, while the test session involves replacing one of the previously explored objects with a novel object. Because rodents have an innate preference for novelty, a rodent that remembers the familiar object will spend more time exploring the novel object7,8,9.
The main advantage of the ORT over other rodent memory tests is that it relies on rodents' natural proclivity for exploring novelty8. Therefore, there is no need for numerous training sessions or any positive or negative reinforcement to motivate behavior. This means that the ORT is much less stressful, relative to other tests10,11,12,13,14,15, and requires significantly less time to run than other commonly used memory tests, such as the Morris water maze or Barnes maze, which both can take up to a week or longer. Consequently, the conditions of the ORT more closely resemble those used in studying human cognition, increasing the ecological validity of the test over many other rodent memory tests. Similarly, because ORT is a simple visual recall task, it has been successfully adapted for use in numerous species, including humans and non-human primates, to assess different inter-species aspects of declarative memory 2,16,17. Finally, the ORT can be easily modified to examine different phases of learning and memory (i.e., acquisition, consolidation, or recall), to assess different types of memory (e.g., spatial memory), or to assess different retention intervals (i.e., short-term vs long-term memory).
The versatility of the ORT provides a platform for innumerable research applications. Studies can make use of pharmacologic agents to either disrupt or enhance memory. Varying the time of drug administration before or after training, or prior to testing can hint at the underlying neural mechanisms that lead to disrupted or enhanced memory6,18,19,20. In a similar way, optogenetic technology can be used at these same various time points to look at the neural activation/inhibition that contributes to the different phases of learning and memory. The ORT is also appropriate for assessing differences in transgenic animals, in lesion studies, or in neurodegenerative models or in aging studies21,22,23,24,25,26,27,28. The time between training and testing, known as the retention interval, can be altered to assess any of these changes on short- and long- term memory26. Ultimately, the ORT can be used as a tool to study pharmacological, genetic, and neurological changes to learning and memory, or these tools can be used to study the basis of learning and memory in the ORT.
All procedures performed here were submitted to and approved by the Animal Care and Use committee and were conducted following NIH guidelines.
1. Object Selection and Experimental Setup
2. Necessary Pilot Experiments
3. Experimental Procedure
4. Data Analysis
A general experimental setup for the ORT is shown in Figure 2. On habituation day (T0) mice are placed in the empty arena for 5 min. Twenty-four hours later, mice are placed back in the chamber with 2 identical objects and allowed to freely explore for up to 10 min (T1). On testing day (T2), the mice are again placed in the arena, but with one familiar object and one novel object, and allowed to explore for up to 10 min. The retention interval, the time betwe...
The ORT is an efficient and flexible method for studying learning and memory in mice. When setting up an experiment, it is important to consider a number of variables that may affect the outcome. As discussed in the representative results, the strain of mouse will affect both exploration time and retention interval. A decrease in exploration time may skew or mask results in an absolute discrimination analysis2,3,5,
The author has nothing to disclose.
Work cited and previously published by the author was supported by a grant from the National Institute of Mental Health (MH088480). The author would like to thank her former mentor, Dr. James O'Donnell for his support in that project. This publication is supported by a grant from the National Institute of Health (T32 DA007135).
Name | Company | Catalog Number | Comments |
Open Field Box | Panlab/Harvard Apparatus | LE800SC | Available in grey, white, or black |
ANY-maze | Stoelting Co. | 60000 | Behavior tracking system |
EthoVisionXT 12 | Noldus | Behavior tracking system; requires 3 point tracking | |
Video Camera | Any | Video camera should be mounted directly overhead of the apparatus | |
70% Ethanol | Fisher Scientific | BP2818-4 | Prior to starting testing and in between trials, each object should be carefully cleaned. The floor and walls of the apparatus should also be cleaned. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved