A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A sampling moiré technique featuring 2-pixel and multi-pixel sampling methods for high-accuracy strain distribution measurements at the micro/nano-scale is presented here.
This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.
Micro/nano-scale deformation measurements are vitally essential for evaluating the mechanical properties, instability behaviors, residual stresses, and crack occurrences of advanced materials. Since optical techniques are non-contact, full-field, and non-destructive, various optical methods have been developed for deformation measurement during the last few decades. In recent years, the micro/nano-scale deformation measurement techniques mainly include the moiré methods1,2,3,4, geometric phase analysis (GPA)5,6, Fourier transformation (FT), digital image correlation (DIC), and electronic speckle pattern interferometry (ESPI). Among these techniques, GPA and FT are not well suited for complex deformation measurements because multiple frequencies exist. The DIC method is simple but powerless against noise because the deformation carrier is random speckle. Finally, ESPI is strongly sensitive to vibration.
Among micro/nano-scale moiré methods, the most commonly used methods at present are the microscope scanning moiré methods, such as electron scanning moiré7,8,9, laser scanning moiré10,11, and atomic force microscope (AFM) moiré12, and some microscope-based moiré methods, such as the digital/overlapping moiré13,14,15 method and the multiplication/fractional moiré method16,17. The scanning moiré method has many advantages, such as a wide field of view, high resolution, and insensitivity to random noise. However, the traditional scanning moiré method is inconvenient for 2D strain measurements because it is necessary to rotate the sample stage or the scanning direction by 90° and to scan twice to generate moiré fringes in two directions18. Rotation and the dual scanning processes introduce rotation error and take a long time, seriously influencing the measurement accuracy of the 2D strain, especially for the shear strain. Although the temporal phase-shifting technique19,20 can improve the deformation measurement accuracy, it requires time and a special phase-shift device unsuitable for dynamic tests.
The sampling moiré method21,22 has a high accuracy in displacement measurements and is now mainly used for deflection measurements on bridges when automobiles pass. To extend the sampling moiré method to micro/nano-scale 2D strain measurements, a reconstructed multiplication moiré method has been newly developed23 from 2-pixel sampling moiré fringes, in which the measurements are twice as sensitive and the wide field of view of the scanning moiré method is kept. Moreover, the spatial phase-shifting sampling moiré method is also developed from multi-pixel sampling moiré fringes, allowing for high-accuracy strain measurements. This protocol will introduce the detailed strain measurement procedure and is expected to help researchers and engineers learn how to measure deformation, improving the manufacturing processes of materials and products.
1. Confirmation of the Micro/Nano-scale Grid on the Specimen
2. Acquisition of Grid Images in the Loading Test
3. Generation of Sampling Moiré Fringes before and after Deformation
4. Deformation Measurement of the Specimen in the Loading Test
The 2D displacement and strain distributions of two carbon fiber-reinforced plastic (CFRP) specimens (#1 and #2) were measured according to the moiré formation principle23 and the measurement process (Figure 1). The CFRP specimens were made up of 10-11 µm-diameter K13D carbon fibers and epoxy resins. The deformation of CFRP #1 was determined using the reconstructed multiplication moiré method from two-step sampling moir&...
In the described technique, one challenging step is the micro/nano-scale grid or grating (abbreviated as grid) fabrication26 if no periodic pattern exists on the specimen. The grid pitch should be uniform before deformation because it is an important parameter for the deformation measurement. If the material is a metal, a metal alloy, or a ceramic, UV or heating nanoimprint lithography (NIL)27, electron beam lithography (EBL)2, focused ion beam (FIB)...
The authors have nothing to disclose.
This work was supported by JSPS KAKENHI, grant numbers JP16K17988 and JP16K05996, and by the Cross-Ministerial Strategic Innovation Promotion Program, Unit D66, Innovative Measurement and Analysis for Structural Materials (SIP-IMASM), operated by the cabinet office. The authors are also grateful to Drs. Satoshi Kishimoto and Kimiyoshi Naito at NIMS for their CFRP material.
Name | Company | Catalog Number | Comments |
Automatic Polishing Machine | Marumoto Struers K.K. | LaboPol-30, Labor Force-100 | |
Carbon Fiber Reinforced Plastic | Mitsubishi Plastics, Inc. | HYEJ16M95DHX1 | |
Computer | DELL Japan | VOSTRO | Can be replaced with another computer with C++ programming language |
Image Recording Software | Lasertec Corporation | LMEYE7 | Installed in a laser scanning microscope |
Ion Coater | Japan Electron Optics Laboratory Ltd. | JEC3000F | |
Laser Scanning Microscope | Lasertec Corporation | OPTELICS HYBRID | |
Nanoimprint Device | Japan Laser Corporation | EUN-4200 | Can be replaced with a electron beam lithography device or a focused ion beam milling device |
Nanoimprint Mold | SCIVAX Corporation | 3.0μm pitch | Customized |
Nanoimprint Resist | Toyo Gosei Co., Ltd | PAK01 | |
Polishing Solution | Marumoto Struers K.K. | DP-Spray P 15μm, 1μm, 0.25μm | Use from coarse to fine |
Pipet | AS ONE Corporation | 10mL | |
Sand Paper | Marumoto Struers K.K. | SiC Foil #320, #800 | Use from coarse to fine |
Spin Coater | MIKASA Corporation | MS-A100 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved