A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we present an experimental method to test the role of multicopy plasmids in the evolution of antibiotic resistance.
Multicopy plasmids are extremely abundant in prokaryotes but their role in bacterial evolution remains poorly understood. We recently showed that the increase in gene copy number per cell provided by multicopy plasmids could accelerate the evolution of plasmid-encoded genes. In this work, we present an experimental system to test the ability of multicopy plasmids to promote gene evolution. Using simple molecular biology methods, we constructed a model system where an antibiotic resistance gene can be inserted into Escherichia coli MG1655, either in the chromosome or on a multicopy plasmid. We use an experimental evolution approach to propagate the different strains under increasing concentrations of antibiotics and we measure survival of bacterial populations over time. The choice of the antibiotic molecule and the resistance gene is so that the gene can only confer resistance through the acquisition of mutations. This "evolutionary rescue" approach provides a simple method to test the potential of multicopy plasmids to promote the acquisition of antibiotic resistance. In the next step of the experimental system, the molecular bases of antibiotic resistance are characterized. To identify mutations responsible for the acquisition of antibiotic resistance we use deep DNA sequencing of samples obtained from whole populations and clones. Finally, to confirm the role of the mutations in the gene under study, we reconstruct them in the parental background and test the resistance phenotype of the resulting strains.
Antibiotic resistance in bacteria is a major health problem1. At a fundamental level, the spread of antibiotic resistance in pathogenic bacteria is a simple example of evolution by natural selection2,3. Put simply, the use of antibiotics generates selection for resistant strains. A key problem in evolutionary biology, therefore, is to understand the factors that influence the ability of bacterial populations to evolve resistance to antibiotics. Selection experiments have emerged as a very powerful tool to investigate the evolutionary biology of bacteria, and this field has produced incr....
1. Construction of the Experimental System Encoding Antibiotic Resistance Gene
Note: Here E. coli MG1655 was used as the recipient strain of the plasmid- or chromosome-encoded antibiotic resistance gene. The antibiotic resistance gene is encoded in the chromosome or a multicopy plasmid in an otherwise isogenic strain (Figure 1).
In our previous work, the evolution the β-lactamase gene blaTEM-1 towards conferring resistance to the third generation cephalosporin ceftazidime12 was investigated. This gene was selected because, although TEM-1 does not confer resistance to ceftazidime, mutations in blaTEM-1 can expand the range of activity of TEM-1 to hydrolyze cephalosporins such as ceftazidime29. Mutations in antibiotic resis.......
We present a new protocol combining molecular biology, experimental evolution and deep DNA sequencing designed to investigate the role of multicopy plasmids in the evolution of antibiotic resistance in bacteria. Although this protocol combines techniques from different fields, all the methods required to develop it are simple, and can be performed in a regular microbiology laboratory. The most critical steps in the protocol probably are the construction of the model system strains and the reconstruction of the mutations .......
The authors have nothing to disclose.
This work was supported by the Instituto de Salud Carlos III (Plan Estatal de I+D+i 2013-2016): grants CP15-00012, PI16-00860, and CIBER (CB06/02/0053), co-financed by the European Development Regional Fund ''A way to achieve Europe'' (ERDF). JAE is supported by the Atracción de talento program of the government of the region of Madrid (2016-T1/BIO-1105) and the I+D Excelencia of the Spanish Ministerio de Economía, Industria y Competitividad (BIO2017-85056-P). ASM is supported by a Miguel Servet Fellowship from the Instituto de Salud Carlos III (MS15/00012) co-financed by The European Social Fund "Investing in your future" (E....
Name | Company | Catalog Number | Comments |
Thermocycler | BioRad | C1000 | |
Electroporator | BiorRad | 1652660 | |
Electroporation cuvettes | Sigma-Aldrich | Z706078 | |
NanoDrop 2000/2000c | Thermo Fisher Scientific | ND-2000 | Determine DNA quality measuring the ratios of absorbance 260nm/280nm and 260nm/230nm |
Incubator | Memmert | UF1060 | |
Incubator (shaker) | Cole-Parmer Ltd | SI500 | |
Electrophoresis power supply | BioRad | 1645070 | Agarose gel electrophoresis |
Electrophoresis chamber | BioRad | 1704405 | Agarose gel electrophoresis |
Pippettes | Biohit | 725020, 725050, 725060, 725070 | |
Multi-channel pippetes | Biohit | 728220, 728230, 728240 | |
Plate reader Synergy HTX | BioTek | BTS1LF | |
Inoculating loops | Sigma-Aldrich | I8388 | |
96-well plates | Falcon | 351172 | |
LB | BD Difco | DF0446-17-3 | |
LB agar | Fisher scientific | BP1425-500 | |
Phusion Polymerase | Thermo Fisher Scientific | F533S | |
Gibson Assembly | New England Biolabs | E2611S | |
Resctriction enzymes | Fermentas FastDigest | ||
Antibiotics | Sigma-Aldrich | ||
QIAprep Spin Miniprep Kit | Qiagen | 27104 | Plasmid extraction kit |
Wizard Genomic DNA Purification Kit | Promega | A1120 | gDNA extraction kit |
DNeasy Blood & Tissue Kits | Qiagen | 69506 | gDNA extraction kit |
Electroporation cuvettes | Sigma-Aldrich | Z706078 | |
Petri dishes | Sigma-Aldrich | D9054 | |
Cryotubes | ClearLine | 390701 | |
96-well plates (-80ºC storage) | Thermo Fisher Scientific | 249945 | |
QuantiFluor dsDNA System | Promega | E2670 | Quantification of DNA concentartion |
Agarose | BioRad | 1613100 | Agarose gel electrophoresis |
50x TAE buffer | BioRad | 1610743 | Agarose gel electrophoresis |
T4 Polynucleotide Kinase | Thermo Fisher Scientific | EK0031 | |
T4 DNA Ligase | Thermo Fisher Scientific | EL0014 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved