Abstract
Immunology and Infection
Phagocytosis plays a key role in host defense, as well as in tissue development and maintenance, and involves rapid, receptor-mediated rearrangements of the actin cytoskeleton to capture, envelop and engulf large particles. Although phagocytic receptors, downstream signaling pathways, and effectors, such as Rho GTPases, have been identified, the dynamic cytoskeletal remodeling of specific receptor-mediated phagocytic events remain unclear. Four decades ago, two distinct mechanisms of phagocytosis, exemplified by Fcγ receptor (FcγR)- and complement receptor (CR)-mediated phagocytosis, were identified using scanning electron microscopy. Binding of immunoglobulin G (IgG)-opsonized particles to FcγRs triggers the protrusion of thin membrane extensions, which initially form a so-called phagocytic cup around the particle before it becomes completely enclosed and retracted into the cell. In contrast, complement opsonized particles appear to sink into the phagocyte following binding to complement receptors. These two modes of phagocytosis, phagocytic cup formation and sinking in, have become well established in the literature. However, the distinctions between the two modes have become blurred by reports that complement receptor-mediated phagocytosis may induce various membrane protrusions. With the availability of high resolution imaging techniques, phagocytosis assays are required that allow real-time 3D (three dimensional) visualization of how specific phagocytic receptors mediate the uptake of individual particles. More commonly used approaches for the study of phagocytosis, such as end-point assays, miss the opportunity to understand what is happening at the interface of particles and phagocytes. Here we describe phagocytic assays, using time-lapse spinning disk confocal microscopy, that allow 3D imaging of single phagocytic events. In addition, we describe assays to unambiguously image Fcγ receptor- or complement receptor-mediated phagocytosis.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved