JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Mice exposed to intraperitoneal LPS secrete exosomes in Broncho-alveolar lavage (BAL) fluid that are packaged with miRNAs. Using a co-culture system, we show that exosomes released in the BAL fluid disrupt expression of tight junction proteins in bronchial epithelial cells and increase expression of pro-inflammatory cytokines that accentuate lung injury.

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a heterogeneous group of lung diseases which continues to have a high morbidity and mortality. The molecular pathogenesis of ALI is being better defined; however, because of the complex nature of the disease molecular therapies have yet to be developed. Here we use a lipopolysaccharide (LPS) induced mouse model of acute septic lung injury to delineate the role of exosomes in the inflammatory response. Using this model, we were able to show that mice that are exposed to intraperitoneal LPS secrete exosomes in Broncho-alveolar lavage (BAL) fluid from the lungs that are packaged with miRNA and cytokines which regulate inflammatory response. Further using a co-culture model system, we show that exosomes released from macrophages disrupt expression of tight junction proteins in bronchial epithelial cells. These results suggest that 1) cross talk between innate immune and structural cells through the exosomal shuttling contribute to the inflammatory response and disruption of the structural barrier and 2) targeting these miRNAs may provide a novel platform to treat ALI and ARDS.

Introduction

ALI and ARDS are the life-threatening forms of respiratory failure with severe hypoxemia caused by non-cardiogenic pulmonary edema which affects approximately 1 million people worldwide annually1. The etiology of ARDS includes direct injury to the lungs from infections or aspiration and a variety of indirect insults. Over the last decade there has been an increased understanding of the molecular pathogenesis of ARDS, however, specific targeted treatments for ARDS are yet to be developed2,3.

Several animal models of acute lung injury have been developed which provide a bridge for translating experimental therapies to human studies4,5. Commonly used models include local installation of oleic acid, bacteria, LPS, and bleomycin. Other approaches include ischemia-reperfusion, cecal ligation puncture, mechanical ventilation-induced stretch injury, hyperoxia or systemic administration of bacteria and LPS5. These models provide a useful biological system to test clinical hypotheses and for the development of potential therapies. To simulate human ARDS, animal models should reproduce inflammation and acute injury to the epithelial and endothelial cells with defects in barrier function in the lungs.

Exosomes are membrane vesicles with 20 - 200 nm in diameter, whose molecular content contains proteins, DNA, RNA, and lipids, and facilitate inter-cellular communications in tissue microenvironment via molecular composition transfer. Exosomes are secreted by multiple types of cells, such as endothelial cells, epithelial cells, smooth muscle cells and tumor cells, and exist in human body fluid. Studies indicate that exosomes regulate cross-talk between immune cells and stromal cells during infectious and sterile inflammatory diseases, and their abnormal release appears to be regulated by various natural and experimental stimuli during physiological and pathological processes6. Such communication network may play an important role in the pathogenesis of lung diseases and may affect pathophysiological progression7,8. As 18 - 22 nucleotide non-coding RNAs, miRNAs exist in both tissue and body fluids, plasma, sera, and modulate mRNA expression at post-translational level9,10.

Packaged miRNAs in exosomes influence differentiation and function of multiple types of cells, and excessive levels are associated with a variety of diseases, including cancer, lung diseases, obesity, diabetes, and cardiovascular disease11,12,13,14,15,16. Entry into the recipient cells and shuttling of exosomal miRNAs facilitate intercellular communications modifying the hemostasis of microenvironment17,18. Acute lung-injury is a complex processes, involving multiple cell types with extensive intercellular communications through exosomes8. miR-155 and miR-146a share the common transcriptional regulatory mechanism and contribute to the inflammatory response and the immune tolerance19,20. Recent studies indicate that both modulate inflammatory response via exosomal miRNAs shuttling between immune cells21. However, the molecular mechanisms underlying modulatory effects of exosomal miRNAs on alveolar response to endotoxin remain unclear, undoubtedly the potential clinical relevance and translational implication merit further investigation.

Co-culture models are being employed to define the interaction of the specific cell types in the complex environment, such as inflammation and cancer22,23. These platforms provide an alternative strategy to interrogate cross talk between cell types particularly for immune and structural cells.

Intra-tracheal, aerosolized, intraperitoneal or systemic administration of LPS are widely used to induce experimental lung injury24,25,26, and have shown to induce epithelial and endothelial permeability defects. Here we use intraperitoneal LPS to induce a septic model of acute lung injury in mice. Within 24 h of intraperitoneal administration of LPS, permeability defects are induced in the lungs with recruitment of inflammatory cells. Further, we show that exosomes from BAL contain miRNA-155 and miR-146a, and exosomes from BAL fluid induce pro-inflammatory cytokines expression in recipient epithelial cells, including IL-6 and TNF-α. These data are the first to show that exosomal miRNAs are secreted in BAL in this model of acute septic lung injury.

Protocol

The overall protocol requires 2 days, including the first day of sepsis induction and isolation of BAL fluid from the animal, and the second day for exosomes isolation from the mouse BALF. All procedures have been reviewed and approved by the Institutional Animal Care and Use Committee at Atlanta VA medical center.

1. Mouse Acute Septic Lung Injury Model

  1. Use 6 - 8 weeks- old male wild-type C57BL/6J mice (weight 20 - 22 g) for the animal model, and perform all procedures using aseptic techniques and instruments. Autoclave all surgical instruments, including forceps and scissors for 20 min at 121 °C.  
  2. Randomly distribute mice into experimental and control group. Restrain mice on a surgical board. Treat mice with Escherichia coli lipopolysaccharide (LPS, 15 mg/kg) by intraperitoneal route. According to the individual body weight, dilute appropriate LPS dosages to 0.1 mL PBS per mouse, then inject LPS solution using a 1 mL syringe with 27 G needle and inject an equivalent volume of PBS to control animals.   
  3. Keep mice in the animal BSL2 facility, which consists of clean cages at appropriate room temperature.
  4. 24 h later, euthanize mice with CO2 inhalation.
  5. Select the surgical area in the center of mouse neck. Make a small incision (approximately 5 mm), and gently separate muscles for the access to the trachea using blunt forceps until the trachea is exposed.
  6. Withdraw mouse BAL fluid with 10 mL sterile syringe with a 27 G needle. First, gently, insert the needle into the trachea and inject 1 mL of sterile PBS slowly into the trachea, then draw BALF into a 3 mL disposable syringe with a 27 G needle. Upon completion of the procedure, dispose of syringes and needles in biohazard sharps container.
  7. Treat surgical instruments with chlorine dioxide, as described previously by Chauret et al.27, and then sterilize all surgical instruments by autoclaving for 20 min at 121 °C.

2.  Exosomes Isolation-serial Ultra-centrifugation and Characterization

  1. Collect mouse BAL fluid in 15 mL conical tubes. To harvest alveolar cells, centrifuge samples for 10 min at 1,000 g, at 4 °C.
  2. Transfer the supernatant to new 15 mL conical tubes, then centrifuge samples for 30 min at 4,000 x g at 4 °C to remove cell debris.
  3. Collect the supernatant in ultracentrifuge tubes and centrifuge samples for 60 min at 10,000 x g at 4 °C to remove larger cellular particles.
  4. Transfer the supernatant to new conical tubes, then filter the samples through 0.2 µm syringe-filter to remove remaining larger particles.
  5. Collect samples in ultracentrifuge tubes, and balance tubes. Centrifuge samples for 2 h at 140,000 x g at 4°C to pellet the exosomes.
    Note: The size of exosomes varies 20 - 200 nm. 0.2 µm filter is used for removing larger particles that are more than 200 nm in size.
  6. Discard the supernatants gently. Dissolve the pellet with 100 µL PBS or lysis solution, and transfer exosomes samples to 1.5 mL tubes, and store at -80 °C until use.
    Note: Transmission electron microscope is recommended to verify isolated exosomes.
  7. Follow the standard TEM sample processing protocol28. Analyze exosomes samples using transmission electron microscopy, and take images, scale bar 200 nm.

3. Preparation of miRNA and Performing miRNA- q-RT-PCR

Note: miRNA-q-RT-PCR is recommended to analyze expression level of miRNAs.

  1. Follow standard miRNAs isolation protocol and make sure to use an equal amount of purified RNAs in single-strand reverse transcription24.
  2. Follow the standard real-time PCR protocol to detect exosomal microRNA level in BAL fluid. Use specific real-time PCR primers against miR-155, miR-146a, and U6 SnRNA. Run PCR reaction with the quantitative PCR apparatus and normalize the expression values to internal control U6 snRNA.
    Note: Each group consists of triplicate samples24.

4. Exosomes Labeling and Purification

  1. Suspend exosomes pellet with 100 µL suspension solution in a 1.5 mL polypropylene tube, then add 0.4 µL of the exosomes dye into the other tube with 100 µL of the suspension solution.
  2. Quickly add exosomes in the solution to the dye solution and mix it thoroughly by pipetting. Keep samples for 5 min at room temperature, protect from light.
  3. Put one exosome spin column in a 1.5 mL elution tube. Transfer the solution mixture to the center of the exosome spin column.
  4. Spin the column for 2 min at 800 x g at room temperature.
  5. Discard the column and store the eluted sample at -20 °C until use.

5. Validation of Exosomes Up Taken by Recipient Cells

  1. Seed 1 x 104 MLE 12 /cell in an 8-well chamber slide, and culture cells at 37 °C, 5% CO2.
  2. Add 10 µL fluorescent-labeled exosomes to the cells. Incubate for 1 h at 37 °C.
  3. Remove culture media and wash cells with PBS, then fix cells with 1% paraformaldehyde for 10 mins at room temperature.
  4. Mount the slide in mount medium with DAPI.
  5. Analyze samples through a fluorescence microscope and take images, 40X magnification.

6. Verification of Interaction between Exosomes and Recipient Cells

  1. Seed 2 x 105 MLE12/well in a 12-well culture plate containing appropriate culture medium, and culture cells at 37 °C, 5% CO2.
  2. Add 20 µg exosomes from mouse BAL fluid to MLE12 cells and set up replicates per experimental group.
  3. 24 h later, wash cells with PBS and add 600 µL lysis buffer into well. Gently shake the plate and collect lysis samples in 1.5 mL tube with the pipette.
  4. Follow the standard total RNA isolation protocol and cDNA reverse transcription protocol, complete the single-strand cDNA reverse transcription29.
  5. Follow the standard real-time PCR protocol to detect mRNA expression level in recipient cells29. Use specific real-time PCR primers against TNF-α, IL-6, and ZO-1. Run PCR reactions with the quantitative PCR apparatus and normalize the expression values to the internal control GAPDH.
    Note: Each group consists of triplicate samples.

Results

To induce septic lung injury, mice were treated with intraperitoneal LPS (15 mg/kg). Within 24 h of LPS administration, neutrophilic influx was seen in the lungs, as shown in Figure 1A. Mouse BAL fluid was drawn, followed by isolation and purification of exosomes. Morphology of BALF exosomes was confirmed by electron transmission microscopy (Figure 1B).

Expression of se...

Discussion

Mouse models of diseases are commonly used to evaluate the physiological function of specific genes and to reduce the cost of experimentation2. The acute septic lung injury described here mimics inflammatory response seen in humans with ARDS. This model is relevant to investigate the molecular pathogenesis, development of biomarkers and to test potential new therapies5.

Co-culture systems are relevant for in vivo studies in the context o...

Disclosures

This work was supported by VA Merit Review 2I01BX001786-06A1 funding to RS.

Acknowledgements

The authors have declared no conflict of interest.

Materials

NameCompanyCatalog NumberComments
lipopolysaccharideSigma-AldrichEscherichia coli 055:B5
PBS pH7.2(1X)Life technologies20012-027
mirVana miRNA isolation kitThermo Fisher449774
TaqMan Gene Expression Master MixThermo Fisher4369016
mmu-miR-155 (002571) primerThermo Fisher4427975
has-miR-146a (000468) primerThermo Fisher4427975
U6snRNA primerThermo Fisher4427975
TNF-α(Mm00443258_m1 ) primerThermo Fisher4331182
IL-6 (Mm00446190_m1   )primerThermo Fisher4331182
ZO-1 (Mm00493699_m1  )primerThermo Fisher4331182
minimal essential medium (MEM)Thermo Fisher11095-072
Trysin-EDTA solution(0.05%)Thermo Fisher25300054
Exosomes were labeled with PKH67 through PKH67 Green Fluorescent Cell linker Mini Kit Sigma-AldrichMINI67-1KT
Exosome Spin Columns (MW3000)Thermo Fisher4484449
Beckman Coulter Optima L-100XP ultracentrifuge Beckman CoulterL-100XP
Ultra-clear centrifuge tubesBeckman Coulter344058
Applied Biosystems 7500 Fast Real-Time PCR SystemThermo Fisher
transmission electron microscopes (TEM)JEOL Ltd120 kV TEM
Olympus BX41 microscopeOlympusBX41

References

  1. Rubenfeld, G. D., Herridge, M. S. Epidemiology and outcomes of acute lung injury. Chest. 131, 554-562 (2007).
  2. Baron, R. M., Choi, A. J., Owen, C. A., Choi, A. M. Genetically manipulated mouse models of lung disease: potential and pitfalls. American journal of physiology. Lung cellular and molecular physiology. , L485-L497 (2012).
  3. Han, S., Mallampalli, R. K. The acute respiratory distress syndrome: from mechanism to translation. Journal of immunology. , 855-860 (1950).
  4. Aeffner, F., Bolon, B., Davis, I. C. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements. Toxicologic pathology. 43, 1074-1092 (2015).
  5. Matute-Bello, G., Frevert, C. W., Martin, T. R. Animal models of acute lung injury. American journal of physiology. Lung cellular and molecular physiology. , L379-L399 (2008).
  6. Terrasini, N., Lionetti, V. Exosomes in Critical Illness. Critical care medicine. , (2017).
  7. Fujita, Y., Kadota, T., Araya, J., Ochiya, T., Kuwano, K. Extracellular Vesicles: New Players in Lung Immunity. American journal of respiratory cell and molecular biology. , (2017).
  8. Kubo, H. Extracellular Vesicles in Lung Disease. Chest. 153, 210-216 (2018).
  9. Krol, J., Loedige, I., Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews. Genetics. 11, 597-610 (2010).
  10. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell. 136, 215-233 (2009).
  11. Fanini, F., Fabbri, M. CANCER-DERIVED EXOSOMIC microRNAs SHAPE THE IMMUNE SYSTEM WITHIN THE TUMOR MICROENVIRONMENT: STATE OF THE ART. Seminars in cell & developmental biology. , (2016).
  12. Agarwal, U., et al. Experimental, Systems, and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients. Circulation research. 120, 701-712 (2017).
  13. Prattichizzo, F., et al. Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?. Diabetes, obesity & metabolism. 18, 855-867 (2016).
  14. Huang-Doran, I., Zhang, C. Y., Vidal-Puig, A. Extracellular Vesicles: Novel Mediators of Cell Communication In Metabolic Disease. Trends in endocrinology and metabolism: TEM. 28, 3-18 (2017).
  15. Khalyfa, A., et al. Circulating Plasma Extracellular Microvesicle MicroRNA Cargo and Endothelial Dysfunction in Children with Obstructive Sleep Apnea. American journal of respiratory and critical care medicine. 194, 1116-1126 (2016).
  16. Thomou, T., et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 542, 450-455 (2017).
  17. Gregson, A. L., et al. Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. American journal of respiratory and critical care medicine. 192, 1490-1503 (2015).
  18. Valadi, H., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology. 9, 654-659 (2007).
  19. Doxaki, C., Kampranis, S. C., Eliopoulos, A. G., Spilianakis, C., Tsatsanis, C. Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. Journal of immunology. , 5750-5761 (2015).
  20. Schulte, L. N., Westermann, A. J., Vogel, J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic acids research. 41, 542-553 (2013).
  21. Alexander, M., et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nature communications. 6, 7321 (2015).
  22. Yuan, Z., et al. TREM-1 is induced in tumor associated macrophages by cyclo-oxygenase pathway in human non-small cell lung cancer. PloS one. 9, e94241 (2014).
  23. Xu, R., Richards, F. M. Development of In Vitro Co-Culture Model in Anti-Cancer Drug Development Cascade. Combinatorial chemistry & high throughput screening. 20, 451-457 (2017).
  24. Yuan, Z., et al. TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine. American journal of physiology. Lung cellular and molecular physiology. , L426-L438 (2016).
  25. Sadikot, R. T., et al. High-dose dexamethasone accentuates nuclear factor-kappa b activation in endotoxin-treated mice. American journal of respiratory and critical care medicine. 164, 873-878 (2001).
  26. Yuan, Z., et al. Curcumin mediated epigenetic modulation inhibits TREM-1 expression in response to lipopolysaccharide. The international journal of biochemistry & cell biology. 44, 2032-2043 (2012).
  27. Chauret, C. P., et al. Chlorine dioxide inactivation of Cryptosporidium parvum oocysts and bacterial spore indicators. Applied and environmental microbiology. 67, 2993-3001 (2001).
  28. Cizmar, P., Yuana, Y. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Methods in molecular biology. , 221-232 (2017).
  29. Yuan, Z., et al. HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1. Scientific reports. 7, 42028 (2017).
  30. Jackson, M. V., et al. Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC). Bio-protocol. 7, (2017).
  31. Fujita, Y., et al. Extracellular Vesicles: New Players in Lung Immunity. American journal of respiratory cell and molecular biology. 17, 474-484 (2017).
  32. Gunasekaran, M., et al. Donor-Derived Exosomes With Lung Self-Antigens in Human Lung Allograft Rejection. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 17, 474-484 (2017).
  33. Kalra, H., et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 13, 3354-3364 (2013).
  34. Baranyai, T., et al. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods. PloS one. 10, e0145686 (2015).
  35. Nordin, J. Z., et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine : nanotechnology, biology, and medicine. 11, 879-883 (2015).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Bronchoalveolar LavageExosomesLipopolysaccharideSeptic Lung InjuryAcute Lung InjuryAcute Respiratory Distress SyndromeAlveolar MicroenvironmentExosome IsolationCentrifugationUltracentrifugationSyringe FiltrationExosome Characterization

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved