JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis

Published: September 26th, 2018

DOI:

10.3791/58132

1Department of Computer Science, University of A Coruña, 2CITIC-Research Center for Information and Communication Technologies, University of A Coruña

This article presents a protocol based on Hydra — a web-based system for clinical decision support that integrates a full and detailed set of functionalities and services required by physicians for complete cardiovascular analysis, risk assessment, early diagnosis, treatment, and monitoring over time.

Cardiovascular diseases (CVDs) are the leading cause of death throughout the world. The total risk of developing CVD is determined by the combined effect of different cardiovascular risk factors (e.g., diabetes, raised blood pressure, unhealthy diet, tobacco use, stress, etc.) that commonly coexist and act multiplicatively. Most CVDs can be prevented by an early identification of the highest risk factors and an appropriate treatment. The stratification of cardiovascular risk factors involves a wide range of parameters and tests that specialists use in their clinical practice. In addition to cardiovascular (CV) risk stratification, ambulatory blood pressure monitoring (ABPM) also provides relevant information for diagnostic and treatment purposes. This work presents a list of protocols based on the Hydra platform, a web-based system for clinical decision support which incorporates a set of functionalities and services that are required for complete cardiovascular analysis, risk assessment, early diagnosis, treatment and monitoring of patients over time. The program includes tools for inputting and managing comprehensive patient data, organized into different checkups to track the evolution over time. It also has a risk stratification tool to compute a CV risk factor based upon several risk stratification tables of reference. Additionally, the program includes a tool that incorporates ABPM analysis and allows the extraction of valuable information by monitoring blood pressure over a specific period of time. Finally, the reporting service summarizes the most relevant information in a set of reports that aid clinicians in their clinical decision-making process.

Cardiovascular diseases (CVDs) are a group of disorders of the circulatory system that constitute the leading cause of disability and premature death throughout the world1,2. According to the World Health Organization (WHO), an estimated 17.7 million people died from CVDs in 2015, representing 31% of all global deaths1,2. There are many risk factors for CVDs, including behavioral factors such as tobacco use, an unhealthy diet, harmful use of alcohol and inadequate physical activity as well as physiological factors, including raised blood pressure (hype....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures were conducted under institutionally approved protocols with patient consent.

1. Patient and Checkup Registration

Note: See Figure 1.

  1. Go to http://www.varpa.es/Hydra/ using any modern web browser.
  2. Use an existing account associated with a doctor to Log In to the Hydra web tool.
  3. Fill in the patient registration form including patient code, date of birth, gender and ethn.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The patient registration described in step 1 is carried out by filling in the form presented in Figure 1. Once the user registers a new patient, the application moves forward to introduce the first checkup, which allows the input of comprehensive patient data. Figure 2 shows a screenshot of the first form of the checkup information. Once the Next button is clicked, the application moves forward to the second chec.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The early identification and monitoring of various cardiovascular risk factors together with an appropriate treatment are critical for the prevention of cardiovascular diseases and premature deaths. In the daily clinical routine, clinicians have to handle large amounts of diverse information to check all the different variables and parameters that affect the circulatory system. Hence, it is a tedious and time-consuming task that complicates diagnosis and treatment prescription.

The proposed pr.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work is supported by the Instituto de Salud Carlos III of the Spanish Government and the European Regional Development Fund (ERDF) through the PI14/02161 and the DTS15/00153 research projects and Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019 Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Computer with color screen N/A N/A
Internet connection N/A N/A
Modern web broser N/A N/A Google Chrome, Internet Explorer, Safari, Fierfox, etc.
Blood pressure monitor Spacelabs N/A Spacelabs 90217

  1. Stamler, J., Stamler, R., Neaton, J. D. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Archives of Internal Medicine. 153 (5), 598-615 (1993).
  2. Kannel, W., Wilson, P. An update on coronary risk factors. Medical Clinics of North America. 79 (5), 951-971 (1995).
  3. Tarride, J. E., et al. A review of the cost of cardiovascular disease. The Canadian Journal of Cardiology. 25 (6), 195-202 (2009).
  4. Wolf-Maier, K., et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. The Journal of American Medical Association. 289 (18), 2363-2369 (2003).
  5. Kearney, P., Whelton, M., Reynolds, K., Muntner, P., Whelton, P., He, J. Global burden of hypertension: analysis of worldwide data. The Lancet. 365 (9455), 217-223 (2005).
  6. Hermida, R., Smolensky, H., Ayala, E., Portaluppi, F. Ambulatory Blood Pressure Monitoring (ABPM) as the reference standard for diagnosis of hypertension and assessment of vascular risk in adults. Chronobiology International. 32 (10), 1329-1342 (2015).
  7. Field, M. . Telemedicine: A Guide to Assessing Telecommunications in Health Care. , (1996).
  8. Charles, B. Telemedicine can lower costs and improve access. Healthcare Financical Management. 54 (4), 66-69 (2000).
  9. Lundberg, T., Westman, G., Hellstrom, S., Sandstrom, H. Digital imaging and telemedicine as a tool for studying inflammatory conditions in the middle ear - evaluation of image quality and agreement between examiners. International Journal of Pediatric Otorhinolaryngoly. 72 (1), 73-79 (2008).
  10. Ortega, M., Barreira, N., Novo, J., Penedo, M., Pose-Reino, A., Gómez-Ulla, F. Sirius: a web-based system for retinal image analysis. International Journal of Medical Informatics. 79 (10), 722-732 (2010).
  11. Novo, J., Rouco, J., Barreira, N., Ortega, M., Penedo, M. G., Campilho, A. Wivern: a Web-Based System Enabling Computer-Aided Diagnosis and Interdisciplinary Expert Collaboration for Vascular Research. Journal of Medical and Biological Engineering. 37 (6), 920-935 (2017).
  12. Paredes, S., Rocha, T., de Carvalho, P., Henriques, J., Morais, J. Matlab tool for cardiovascular disease risk prediction. Experiment@ International Conference (exp.at' 13). , 190-191 (2013).
  13. Goff, D., et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. Circulation. 137 (11), (2013).
  14. Sufi, F., Khalil, I., Tari, Z. A cardiod based technique to identify cardiovascular diseases using mobile phones and body sensors. Conference Proceedings IEEE Engineering in Medicine and Biology Society. 2010, 5500-5503 (2010).
  15. Lin, C. T., et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Transactions on Information Technology in Biomedicine. 14 (3), 726-733 (2010).
  16. Lee, H., Wang, W., Lu, S., Wu, B., Ko, L. Home-based mobile cardio-pulmonary rehabilitation consultant system. Conference Proceedings IEEE Engineering in Medicine and Biology Society. , 989-992 (2011).
  17. Kang, H., Park, H. Development of hypertension management mobile application based on clinical practice guidelines. Studies in Health Technology and Informatics. 210, 602-606 (2015).
  18. Novo, J., Hermida, A., Ortega, M., Barreira, N., Penedo, M. G., López, J. E., Calvo, C. Hydra: A web-based system for cardiovascular analysis, diagnosis and treatment. Computer methods and programs in biomedicina. 139, 61-81 (2017).
  19. Janes, H., Pepe, M., Gu, W. Assessing the value of risk predictions by using risk stratification tables. Annals of Internal Medicine. 149 (10), 751-760 (2008).
  20. Mancia, G., et al. 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Journal of Hypertension. 25 (6), 1105-1187 (2007).
  21. Grundy, S., Brewer, H., Cleeman, J., Smith, S., Lenfant, C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Circulation. 109 (3), 433-438 (2004).
  22. Conroy, R., et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal. 24 (11), 987-1003 (2003).
  23. Kannel, W., McGee, D., Gordon, T., et al. A general cardiovascular risk profile: the Framingham study. American Journal of Cardiology. 38 (1), 46-51 (1976).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved