A subscription to JoVE is required to view this content. Sign in or start your free trial.
A protocol is presented to localize Ag in cetacean liver and kidney tissues by autometallography. Furthermore, a new assay, named the cetacean histological Ag assay (CHAA) is developed to estimate the Ag concentrations in those tissues.
Silver nanoparticles (AgNPs) have been extensively used in commercial products, including textiles, cosmetics, and health care items, due to their strong antimicrobial effects. They also may be released into the environment and accumulate in the ocean. Therefore, AgNPs are the major source of Ag contamination, and public awareness of the environmental toxicity of Ag is increasing. Previous studies have demonstrated the bioaccumulation (in producers) and magnification (in consumers/predators) of Ag. Cetaceans, as the apex predators of ocean, may have been negatively affected by the Ag/Ag compounds. Although the concentrations of Ag/Ag compounds in cetacean tissues can be measured by inductively coupled plasma mass spectroscopy (ICP-MS), the use of ICP-MS is limited by its high capital cost and the requirement for tissue storage/preparation. Therefore, an autometallography (AMG) method with an image quantitative analysis by using formalin-fixed, paraffin-embedded (FFPE) tissue may be an adjuvant method to localize Ag distribution at the suborgan level and estimate the Ag concentration in cetacean tissues. The AMG positive signals are mainly brown to black granules of various sizes in the cytoplasm of proximal renal tubular epithelium, hepatocytes, and Kupffer cells. Occasionally, some amorphous golden yellow to brown AMG positive signals are noted in the lumen and basement membrane of some proximal renal tubules. The assay for estimating the Ag concentration is named the Cetacean Histological Ag Assay (CHAA), which is a regression model established by the data from image quantitative analysis of the AMG method and ICP-MS. The use of AMG with CHAA to localize and semi-quantify heavy metals provides a convenient methodology for spatio-temporal and cross-species studies.
Silver nanoparticles (AgNPs) have been extensively used in commercial products, including textiles, cosmetics, and health care items, due to their great antimicrobial effects1,2. Therefore, the production of AgNPs and the number of AgNP-containing products are increased over time3,4. However, AgNPs may be released into the environment and accumulate in the ocean5,6. They have become the major source of Ag contamination, and the public awareness of the environmental toxicity of Ag is increasing.....
The study was performed in accordance with international guidelines, and the use of cetacean tissue samples was permitted by the Council of Agriculture of Taiwan (Research Permit 104-07.1-SB-62).
1. Tissue Sample Preparation for ICP-MS Analysis
Note: The liver and kidney tissues were collected from freshly dead and moderately autolyzed stranded cetaceans24, including 6 stranded cetaceans of 4 different species, 1 Grampus griseus (Gg), 2 Kogia spp. (Ko), 2 Lagenodelphis hosei (Lh), 1 Stenella attenuata (Sa). Each stranded cetacean had a field number for ind....
Representative images of the AMG positive signals in the cetacean liver and kidney tissues are shown in Figure 5. The AMG positive signals include variably-sized brown to black granules of various sizes in the cytoplasm of proximal renal tubular epithelium, hepatocytes, and Kupffer cells. Occasionally, amorphous golden yellow to brown AMG positive signals are noted in the lumen and basement membrane of some proximal renal tubules. There is a positive correlat.......
The purpose of the article study is to establish an adjuvant method to evaluate the Ag distribution at suborgan levels and to estimate Ag concentrations in cetacean tissues. The current protocols include 1) Determination of Ag concentrations in cetacean tissues by ICP-MS, 2) AMG analysis of pair-matched tissue samples with known Ag concentrations, 3) Establishment of the regression model (CHAA) for estimating the Ag concentrations by AMG positive values, 4) Evaluation of the accuracy and precision of CHAA, and 5) Estimat.......
The authors have nothing to disclose.
We thank the Taiwan Cetacean Stranding Network for sample collection and storage, including the Taiwan Cetacean Society, Taipei; the Cetacean Research Laboratory (Prof. Lien-Siang Chou), the Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei; the National Museum of Natural Science (Dr. Chiou-Ju Yao), Taichung; and the Marine Biology & Cetacean Research Center, National Cheng-Kung University. We also thank the Forestry Bureau, Council of Agriculture, Executive Yuan for their permit.
....Name | Company | Catalog Number | Comments |
HQ Silver enhancement kit | Nanoprobes | #2012 | |
Surgipath Paraplast | Leica Biosystems | 39601006 | Paraffin |
100% Ethanol | Muto Pure Chemical Co., Ltd | 4026 | |
Non-Xylene | Muto Pure Chemical Co., Ltd | 4328 | |
Silane coated slide | Muto Pure Chemical Co., Ltd | 511614 | |
Cover glass (25 x 50 mm) | Muto Pure Chemical Co., Ltd | 24501 | |
Malinol | Muto Pure Chemical Co., Ltd | 20092 | |
GM Haematoxylin Staining | Muto Pure Chemical Co., Ltd | 3008-1 | |
10% neutral buffered formalin solution | Chin I Pao Co., Ltd | --- | |
Tip (1000 μL) | MDBio, Inc. | 1000 | |
PIPETMAN Classic P1000 | Gilson, Inc. | F123602 | |
15 ml Centrifuge Tube | GeneDireX, Inc. | PC115-0500 | |
Dogfish liver | National Research Council of Canada | DOLT-2 | |
Dogfish muscle | National Research Council of Canada | DORM-2 | |
Inductively coupled plasma mass spectrometry (ICP-MS) | PerkinElmer Inc. | PE-SCIEX ELAN 6100 DRC | |
FreeZone 6 liter freeze dry system | Labconco | 7752030 | For freeze drying |
BRAND® SILBERBRAND volumetric flask | Merck | Z326283 | |
30 mL standard vial, flat interior with 33 mm closure | Savillex Corporation | 200-030-12 | For diagestion |
Nitric acid, superpur®, 65.0% | Merck | 1.00441 | For diagestion |
Hot Plate/Stirrers | Corning® | PC-220 | For diagestion |
High Shear lab mixer | Silverson | SL2T | For homogenization |
Sterile polypropylene sample jar (250mL) | Thermo Scientific™ | 6186L05 | For homogenization |
Digital camera | Nikon Corporation | DS-Fi2 | |
Light microscope | Nikon Corporation | ECLIPSE Ni-U | |
Shandon™ Finesse™ 325 manual microtome | Thermo Scientific™ | A78100001H | |
Accu-Cut® SRM™ 200 rotary microtome | Sakura | 1429 | |
Microtome blade S35 | FEATHER® | 207500000 | |
Slide staining dish and cover | Brain Research Laboratories | #3215 | |
Steel staining rack | Brain Research Laboratories | #3003 | |
Shandon embedding center | Thermo Scientific™ | S-EC | |
Shandon Citadel® tissue processor | Thermo Scientific™ | 69800003 | |
Slide warmer | Lab-Line Instruments | 26005 | |
Water bath | Shandon Capshaw | 3964 | |
Filter paper | Merck | 1541-070 | |
Prism 6.01 for windows | GraphPad Software | Statistic software | |
ImageJ | National Institutes of Health | ||
Stainless steel tissue embedding mould | Shenyang Roundfin Trade Co., Ltd | RD-TBM003 | For paraffin emedding |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved