JoVE Logo
Faculty Resource Center

Sign In

Abstract

Engineering

Quantitative Analysis by Thermogravimetry-Mass Spectrum Analysis for Reactions with Evolved Gases

Published: October 29th, 2018

DOI:

10.3791/58233

1School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 2Institute of Engineering Thermophysics, Chinese Academy of Sciences

During energy conversion, material production, and metallurgy processes, reactions often have the features of unsteadiness, multistep, and multi-intermediates. Thermogravimetry-mass spectrum (TG-MS) is seen as a powerful tool to study reaction features. However, reaction details and reaction mechanics have not been effectively obtained directly from the ion current of TG-MS. Here, we provide a method of an equivalent characteristic spectrum analysis (ECSA) for analyzing the mass spectrum and giving the mass flow rate of reaction gases as precise as possible. The ECSA can effectively separate overlapping ion peaks and then eliminate the mass discrimination and temperature-dependent effect. Two example experiments are presented: (1) the decomposition of CaCO3 with evolved gas of CO2 and the decomposition of hydromagnesite with evolved gas of CO2 and H2O, to evaluate the ECSA on single-component system measurement and (2) the thermal pyrolysis of Zhundong coal with evolved gases of inorganic gases CO, H2, and CO2, and organic gases C2H4, C2H6, C3H8, C6H14, etc., to evaluate the ECSA on multi-component system measurement. Based on the successful calibration of the characteristic spectrum and relative sensitivity of specific gas and the ECSA on mass spectrum, we demonstrate that the ECSA accurately gives the mass flow rates of each evolved gas, including organic or inorganic gases, for not only single but multi-component reactions, which cannot be implemented by the traditional measurements.

Tags

Keywords Thermogravimetry mass Spectrum Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved