JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

A Model of Glaucoma Induced by Circumlimbal Suture in Rats and Mice

Published: October 5th, 2018

DOI:

10.3791/58287

1Department of Optometry and Vision Sciences, University of Melbourne

Chronic ocular hypertension is induced by applying a circumlimbal suture in rats and mice, leading to functional and structural deterioration of the retinal ganglion cells consistent with glaucoma.

The circumlimbal suture is a technique for inducing experimental glaucoma in rodents by chronically elevating intraocular pressure (IOP), a well-known risk factor for glaucoma. This protocol demonstrates a step-by-step guide on this technique in Long Evans rats and C57BL/6 mice. Under general anesthesia, a "purse-string" suture is applied on the conjunctiva, around the equator and behind the limbus of the eye. The fellow eye serves as an untreated control. Over the duration of our study, which was a period of 8 weeks for rats and 12 weeks for mice, IOP remained elevated, as measured regularly by rebound tonometry in conscious animals without topical anesthesia. In both species, the sutured eyes showed electroretinogram features consistent with preferential inner retinal dysfunction. Optical coherence tomography showed selective thinning of the retinal nerve fiber layer. Histology of the rat retina in cross-section found reduced cell density in the ganglion cell layer, but no change in other cellular layers. Staining of flat-mounted mouse retinae with a ganglion cell specific marker (RBPMS) confirmed ganglion cell loss. The circumlimbal suture is a simple, minimally invasive and cost-effective way to induce ocular hypertension that leads to ganglion cell injury in both rats and mice.

Animal models provide an important platform for laboratory investigation of cellular processes underlying glaucoma pathogenesis, as well as to evaluate potential therapeutic interventions. Several inducible models have been developed to produce sustained intraocular pressure (IOP) elevation, the most important risk factor for glaucoma. Methods that have been applied to elevate IOP include: hypertonic saline injection in episcleral veins1, laser photocoagulation of the trabecular meshwork2 or of the limbal veins3, and intracameral injection of substances such as ghost red blood cells.css-f1q1l5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;background-image:linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 0.8) 40%, rgba(255, 255, 255, 1) 100%);width:100%;height:100%;position:absolute;bottom:0px;left:0px;font-size:var(--chakra-fontSizes-lg);color:#676B82;}

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experimental procedures were conducted according to the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, set by the National Health and Medical Research Council in Australia. Ethics approval was obtained from the Howard Florey Institute Animal Ethics Committee (approval number 13-044-UM and 13-068-UM for rats and mice, respectively).

1. Intraocular Pressure Measurement in Conscious Rats

  1. Set the laboratory rebound tonometer to the rat setting........

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The following results in rats18 and mice16 have been previously reported and are summarized here. The circumlimbal suture produced a similar pattern of IOP elevation in rats and mice (Figure 2). A brief IOP spike, up to 58.1 ± 2.7 mmHg in rats and 38.7 ± 2.2 mmHg in mice, was found immediately after the suture procedure. In rats, IOP magnitude gradually reduced over time to be 44 ± 6 mmHg and 32 &.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The circumlimbal suture is a new model of chronic ocular hypertension. In addition to the studies from which the representative results are sourced16,18, this animal model has been utilized in a number of recent studies15,23,24,25,26. Comparison across these previous reports shows that the method produ.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work is funded by National Health and Medical Research Council of Australia project grant (1046203), Australian Research Council Future Fellowship (FT130100338).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
normal saline Baxter International Inc AHB1323 Maintain corneal hydration during surgery
Chlorhexadine 0.5% Orion Laboratories 27411, 80085 Disinfection of surgical instrument
Isoflurane 99.9% Abbott Australasia Pty Ltd CAS 26675-46-7 Proprietory Name: Isoflo(TM) Inhalation anaaesthetic. Pharmaceutical-grade inhalation anesthetic mixed with oxygen gas for suture procedure
ocular lubricant Alcon Laboratories  1618611 Proprietory Name: Genteal, ocular lubricant to keep the other eye moist
Needle holder (microsurgery) World Precision Instruments 555419NT To hold needle during ocular surgery
Proxymetacaine 0.5% Alcon Laboratories  CAS 5875-06-9 Topical ocular analgesia
Scissors (microsurgery) World Precision Instruments 501232 To cut excessive suture stump during ligation
Surgical drape Vital Medical Supplies GM29-612EE Ensure sterile enviornment during surgery
Suture needle for rats (microsurgery) Ninbo medical needles 151109 8-0 nylon suture attached with round needle, cutting edge 3/8, dual-needle, suture length 30cm
Suture needle for mice (microsurgery) Ninbo medical needles 160905 10-0 nylon suture attached with round needle, cutting edge 3/8, dual-needle, suture length 30cm
Tweezers (microsurgery) World Precision Instruments 500342 Manipulate tissues during ocular surgery
rebound tonometer TONOLAB, iCare, Helsinki, Finland TV02 for intraocular pressure monitoring

  1. Morrison, J. C., et al. A rat model of chronic pressure-induced optic nerve damage. Experimental Eye Research. 64 (1), 85-96 (1997).
  2. Feng, L., Chen, H., Suyeoka, G., Liu, X. A laser-induced mouse model of chronic ocular hypertension to characterize visual defects. Journal of Visualized Experiments. (78), (2013).
  3. Chiu, K., Chang, R., So, K. F. Laser-induced chronic ocular hypertension model on SD rats. Journal of Visualized Experiments. (10), 549 (2007).
  4. Quigley, H. A., Addicks, E. M. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Investigative Ophthalmology & Visual Science. 19 (2), 126-136 (1980).
  5. Bunker, S., et al. Experimental glaucoma induced by ocular injection of magnetic microspheres. Journal of Visualized Experiments. (96), (2015).
  6. Weber, A. J., Zelenak, D. Experimental glaucoma in the primate induced by latex microspheres. Journal of Neuroscience Methods. 111 (1), 39-48 (2001).
  7. Moreno, M. C., et al. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Experimental Eye Research. 81 (1), 71-80 (2005).
  8. Hoyng, P. F., Verbey, N., Thorig, L., van Haeringen, N. J. Topical prostaglandins inhibit trauma-induced inflammation in the rabbit eye. Investigative Ophthalmology & Visual Science. 27 (8), 1217-1225 (1986).
  9. Kezic, J. M., Chrysostomou, V., Trounce, I. A., McMenamin, P. G., Crowston, J. G. Effect of anterior chamber cannulation and acute IOP elevation on retinal macrophages in the adult mouse. Investigative Ophthalmology & Visual Science. 54 (4), 3028-3036 (2013).
  10. Waisbourd, M., et al. Reversible structural and functional changes after intraocular pressure reduction in patients with glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology. 254 (6), 1159-1166 (2016).
  11. Foulsham, W. S., Fu, L., Tatham, A. J. Visual improvement following glaucoma surgery: a case report. BMC Ophthalmology. 14, 162 (2014).
  12. Anderson, A. J., Stainer, M. J. A control experiment for studies that show improved visual sensitivity with intraocular pressure lowering in glaucoma. Ophthalmology. 121 (10), 2028-2032 (2014).
  13. Ventura, L. M., Feuer, W. J., Porciatti, V. Progressive loss of retinal ganglion cell function is hindered with IOP-lowering treatment in early glaucoma. Investigative Ophthalmology & Visual Science. 53 (2), 659-663 (2012).
  14. Zhao, D., et al. ARVO abstract number 3696 - B0043. annual meeting of Association for Research in Vision and Ophthalmology, Honolulu, Hawaii, USA. , (2018).
  15. Liu, H. H., et al. Chronic ocular hypertension induced by circumlimbal suture in rats. Investigative Ophthalmology & Visual Science. 56 (5), 2811-2820 (2015).
  16. Zhao, D., et al. Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Frontiers in Neuroscience. 11, 41 (2017).
  17. Nguyen, C. T., et al. Simultaneous Recording of Electroretinography and Visual Evoked Potentials in Anesthetized Rats. Journal of Visualized Experiments. (113), (2016).
  18. Van Koeverden, A. K., He, Z., Nguyen, C. T., Vingrys, A. J., Bui, B. V. Systemic hypertension is not protective against chronic IOP elevation in a rodent model. Scientific Reports. 8 (1), 7107 (2018).
  19. Rodriguez, A. R., de Sevilla Muller, L. P., Brecha, N. C. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. Journal of Comparative Neurology. 522 (6), 1411-1443 (2014).
  20. Aihara, M., Lindsey, J. D., Weinreb, R. N. Twenty-four-hour pattern of mouse intraocular pressure. Exp Eye Research. 77 (6), 681-686 (2003).
  21. Jia, L., Cepurna, W. O., Johnson, E. C., Morrison, J. C. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Investigative Ophthalmology & Visual Science. 41 (6), 1380-1385 (2000).
  22. Nadal-Nicolas, F. M., Jimenez-Lopez, M., Sobrado-Calvo, P., Nieto-Lopez, L., Canovas-Martinez, I., Salinas-Navarro, M., Vidal-Sanz, M., Agudo, M. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Investigative Ophthalmology & Visual Science. 50 (8), 3860-3868 (2009).
  23. Liu, H. H., Flanagan, J. G. A Mouse Model of Chronic Ocular Hypertension Induced by Circumlimbal Suture. Investigative Ophthalmology & Visual Science. 58 (1), 353-361 (2017).
  24. Liu, H. H., He, Z., Nguyen, C. T., Vingrys, A. J., Bui, B. V. Reversal of functional loss in a rat model of chronic intraocular pressure elevation. Ophthalmic & Physiological Optics. 37 (1), 71-81 (2017).
  25. Liu, H. H., Zhang, L., Shi, M., Chen, L., Flanagan, J. G. Comparison of laser and circumlimbal suture induced elevation of intraocular pressure in albino CD-1 mice. PLoS One. 12 (11), 0189094 (2017).
  26. Shen, H. H., et al. Intraocular Pressure Induced Retinal Changes Identified Using Synchrotron Infrared Microscopy. PLoS One. 11 (10), 0164035 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved