JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Chemistry

Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities

Published: October 2nd, 2018

DOI:

10.3791/58368

1Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn

* These authors contributed equally

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

Abstract

Peptides with a high number of cysteines are usually influenced regarding the three-dimensional structure by their disulfide connectivity. It is thus highly important to avoid undesired disulfide bond formation during peptide synthesis, because it may result in a completely different peptide structure, and consequently altered bioactivity. However, the correct formation of multiple disulfide bonds in a peptide is difficult to obtain by using standard self-folding methods such as conventional buffer oxidation protocols, because several disulfide connectivities can be formed. This protocol represents an advanced strategy required for the targeted synthesis of multiple disulfide-bridged peptides which cannot be synthesized via buffer oxidation in high quality and quantity. The study demonstrates the application of a distinct protecting group strategy for the synthesis of all possible 3-disulfide-bonded peptide isomers of µ-conotoxin PIIIA in a targeted way. The peptides are prepared by Fmoc-based solid phase peptide synthesis using a protecting group strategy for defined disulfide bond formation. The respective pairs of cysteines are protected with trityl (Trt), acetamidomethyl (Acm), and tert-butyl (tBu) protecting groups to make sure that during every oxidation step only the required cysteines are deprotected and linked. In addition to the targeted synthesis, a combination of several analytical methods is used to clarify the correct folding and generation of the desired peptide structures. The comparison of the different 3-disulfide-bonded isomers indicates the importance of accurate determination and knowledge of the disulfide connectivity for the calculation of the three-dimensional structure and for interpretation of the biological activity of the peptide isomers. The analytical characterization includes the exact disulfide bond elucidation via tandem mass spectrometry (MS/MS) analysis which is performed with partially reduced and alkylated derivatives of the intact peptide isomer produced by an adapted protocol. Furthermore, the peptide structures are determined using 2D nuclear magnetic resonance (NMR) experiments and the knowledge obtained from MS/MS analysis.

Erratum

Erratum: Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities

An erratum was issued for: Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities. The Protocol and Materials sections were updated.

Step 1.1.3 in the Protocol section was updated from:

Weigh the individual reagents (amino acids, HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate)) according to the protocol and dissolve them in dimethylformamide (DMF) to a final concentration of 2.4 M (amino acids) and 0.6 M (HBTU), respectively.

to:

Weigh the individual reagents (amino acids, HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate)) according to the protocol and dissolve them in dimethylformamide (DMF) to a final concentration of 0.6 M (amino acids) and 0.6 M (HBTU), respectively.

Step 1.2 in the Protocol section was updated from:

NOTE: The protocol applies to 100 mg of resin (loading: 0.28 mmol/g) added to one reaction column for 28 μmol scale.

to:

NOTE: The standardized protocol usually applies to 100 mg of resin (loading: 0.53 mmol/g) added to one reaction column for 53 μmol scale leading to the following equivalents: 5 eq. HBTU, 10 eq. NMM, 5 eq. amino acid. In case of PIIIA, however, a loading of 0.28 mmol/g (28 µmol scale) is used, which results in the specified higher equivalents.

Step 1.2.3.1 in the Protocol section was updated from:

HBTU (450 µL; 0.6 M in DMF; 270 µmol; 9.6 eq.), NMM (125 µL; 50% in DMF; 568 µmol; 20 eq.), Fmoc-amino acid (420 µL; 2.4 M in DMF; 1.01 mmol; 36 eq.).

to:

HBTU (415 µL; 0.6 M in DMF; 249 µmol; 9 eq.), NMM (112 µL; 50% in DMF; 510 µmol; 18 eq.), Fmoc-amino acid (420 µL; 0.6 M in DMF; 252 µmol; 9 eq.).

The first item in the Materials table was updated from:

Fmoc Rink amide resinNovabiochem855001

to:

PS PEG2000 Fmoc Rink-amide ResinVarian, Inc.PL3867-3764AmphiSpheres 40 RAM

Explore More Videos

Keywords Disulfide Bonds

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved