JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Inducible and Reversible Dominant-negative (DN) Protein Inhibition

Published: January 7th, 2019



1Department of Oral Biology, Creighton University School of Dentistry

Here we present a protocol to develop a dominant-negative inducible system, in which any protein can be conditionally inactivated by reversibly overexpressing a dominant-negative mutant version of it.

Dominant-negative (DN) protein inhibition is a powerful method to manipulate protein function and offers several advantages over other genome-based approaches. For example, although chimeric and Cre-LoxP targeting strategies have been widely used, the intrinsic limitations of these strategies (i.e., leaky promoter activity, mosaic Cre expression, etc.) have significantly restricted their application. Moreover, a complete deletion of many endogenous genes is embryonically lethal, making it impossible to study gene function in postnatal life. To address these challenges, we have made significant changes to an early genetic engineering protocol and combined a short (transgenic) version of the Rb1 gene with a lysosomal protease procathepsin B (CB), to generate a DN mouse model of Rb1 (CBRb). Due to the presence of a lysosomal protease, the entire CB-RB1 fusion protein and its interacting complex are routed for proteasome-mediated degradation. Moreover, the presence of a tetracycline inducer (rtTA) element in the transgenic construct enables an inducible and reversible regulation of the RB1 protein. The presence of a ubiquitous ROSA-CAG promoter in the CBRb mouse model makes it a useful tool to carry out transient and reversible Rb1 gene ablation and provide researchers a resource for understanding its activity in virtually any cell type where RB1 is expressed.

Most approaches aiming at the gene and protein ablations rely on permanent processes, which generally lead to the complete elimination or truncation of the gene, RNA sequences, or protein of interest (POI). The overall goal of this method is to engineer a recombinant protein to abolish the function of endogenous, wild-type protein. We have revisited and revamped an alternative strategy1,2, which allows for the temporary ablation of a POI through DN inhibition. This method works for both multimeric and monomeric peptides but is best suited for proteins that function in a multimeric assembly.

.css-f1q1l5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;background-image:linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 0.8) 40%, rgba(255, 255, 255, 1) 100%);width:100%;height:100%;position:absolute;bottom:0px;left:0px;font-size:var(--chakra-fontSizes-lg);color:#676B82;}

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Generation of the transgenic CBRb mouse and all animal care and experiments associated with the study were approved by the Creighton University Institutional Animal Care and Use Committee (IACUC) and performed by their guidelines.

1. Transgenic CB-Myc6-Rb1 Construct

NOTE: The cloning of CBRb into a pTet_Splice vector was done in a multi-step process (Figure 1A and 1B).

  1. Log in or to access full content. Learn more about your institution’s access to JoVE content here

Generally, designing a DN mutation requires a considerable amount of information on the structure and function of the POI. In contrast, the DN strategy presented here is particularly useful when the structural and functional information for the POI is limited. If the POI is a multimeric protein, a fusion of one subunit to a lysosomal protease can dominantly inhibit the assembled multimer and, potentially, other ligands through a combination of proteolysis of the endogenous subunits and su.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To circumvent the limitations associated with traditional transgenic strategies, we sought to generate a mouse model in which an endogenous POI can be conditionally inactivated by overexpressing a DN mutant form of it in a spatiotemporal manner. To abolish the function of endogenous POIs, several options have been proposed15,16,17. We have modified an earlier genetic strategy1 by combining the Dox-depende.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The pCS2+CB-Myc6 vector was a gift from Marshall Horwitz (University of Washington, Seattle, WA, USA). The HEI-OC1 cells were kindly provided by Fedrico Kalinec (David Geffen School of Medicine, UCLA, Los Angeles, CA, USA). Technical support was provided by the UNMC Mouse Genome Engineering Core (C.B. Gurumurthy, Don Harms, Rolen Quadros) and the Creighton University Integrated Biomedical Imaging Facility (Richard Hallworth, John Billheimer). The UNMC Mouse Genome Engineering was supported by an Institutional Development Award (IDea) from the NIH/NIGMS, grant number P20 GM103471. The Integrated Biomedical Imaging Facility was supported by the Creighton University Scho....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Dulbecco's Modified Eagle's Medium, DMEM GIBCO-BRL 11965-084
Minimum Essential Medium Eagle, MEME  Sigma  M8042
Fetal bovine serum Sigma  F2442 
Lipofectamine  DharmaFECT T-2010-03
Sal I Roche 11745622
EcoRV-HF New England BioLabs R3195S
NotI Roche 13090730
CaspaTag  Millipore APT523
DAPI Sigma  D9542
Staurosporine Sigma  S4400
CyQuant NF cell proliferation kit  Invitrogen C35007
Retinoblastoma 1 antibody Abcam Ab6075
c-Myc antibody Sigma  M5546
b-actin Sigma  A5316
Ki-67  Thermofisher scientific MA5-14520
Phallodin Thermofisher scientific A12379
Fluorescence microplate reader FLUOstar OPTIMA, BMG Labtech
Epifluorescence microscope  NikonEclipse80i
The TetO-DN-CB-myc6-Rb1 (DN-CBRb) mouse line is available from the Jackson Laboratory as JAX#032011. 

  1. Li, F. Q., et al. Preferential MyoD homodimer formation demonstrated by a general method of dominant negative mutation employing fusion with a lysosomal protease. Journal of Cell Biology. 135 (4), 1043-1057 (1996).
  2. Tarang, S., et al. Generation of a retinoblastoma (rb)1-inducible dominant-negative (DN) mouse model. Frontiers Cellular Neuroscience. 9 (52), (2015).
  3. Kominami, E., et al. The selective role of cathepsins B and D in the lysosomal degradation of endogenous and exogenous proteins. FEBS Letters. 287 (1-2), 189-192 (1991).
  4. Cortellino, S., et al. Defective ciliogenesis, embryonic lethality and severe impairment of the sonic hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Developmental Biology. 325 (1), 225-237 (2009).
  5. Ferreira, C., et al. Early embryonic lethality of H ferritin gene deletion in mice. Journal of Biological Chemistry. 275 (5), 3021-3024 (2000).
  6. Lee, E. Y., et al. Mice deficient for rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature. 359 (6393), 288-294 (1992).
  7. Turlo, K. A., et al. When cre-mediated recombination in mice does not result in protein loss. Genetics. 186 (3), 959-967 (2010).
  8. Weber, T., et al. Rapid cell-cycle reentry and cell death after acute inactivation of the retinoblastoma gene product in postnatal cochlear hair cells. Proceedings of the National Academy of Sciences of the United States of America. 105 (2), 781-785 (2008).
  9. Zhang, J., et al. The first knockout mouse model of retinoblastoma. Cell Cycle. 3 (7), 952-959 (2004).
  10. Zhao, H., et al. Deletions of retinoblastoma 1 (Rb1) and its repressing target S phase kinase-associated protein 2 (Skp2) are synthetic lethal in mouse embryogenesis. Journal of Biological Chemistry. 291 (19), 10201-10209 (2016).
  11. Yamasaki, L., et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-) mice. Nature Genetics. 18 (4), 360-364 (1998).
  12. Li, F. Q., et al. Selection of a dominant negative retinoblastoma protein (RB) inhibiting satellite myoblast differentiation implies an indirect interaction between MyoD and RB. Molecular and Cellular Biology. 20 (14), 5129-5139 (2000).
  13. Pitkanen, K., et al. Expression of the human retinoblastoma gene product in mouse fibroblasts: Effects on cell proliferation and susceptibility to transformation. Experimental Cell Research. 207 (1), 99-106 (1993).
  14. Chano, T., et al. Neuromuscular abundance of RB1CC1 contributes to the non-proliferating enlarged cell phenotype through both RB1 maintenance and TSC1 degradation. International Journal of Molecular Medicine. 18 (3), 425-432 (2006).
  15. Kole, R., et al. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nature Reviews Drug Discovery. 11 (2), 125-140 (2012).
  16. Yamamoto, A., et al. The ons and offs of inducible transgenic technology: A review. Neurobiology of Disease. 8 (6), 923-932 (2001).
  17. Houdebine, L. M., et al. Transgenic animal models in biomedical research. Methods in Molecular Biology. 360, 163-202 (2007).
  18. Brehm, A., et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 391 (6667), 597-601 (1998).
  19. Lu, Z., et al. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer. Oncogene. 25 (2), 230-239 (2006).
  20. Magnaghi-Jaulin, L., et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 391 (6667), 601-605 (1998).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved