Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we present a protocol for murine in vivo labeling of glomerular cell surface proteins with biotin. This protocol contains information on how to perfuse mouse kidneys, isolate glomeruli, and perform endogenous immunoprecipitation of the protein of interest.

Abstract

Proteinuria results from the disruption of the glomerular filter that is composed of the fenestrated endothelium, glomerular basement membrane, and podocytes with their slit diaphragms. The delicate structure of the glomerular filter, especially the slit diaphragm, relies on the interplay of diverse cell surface proteins. Studying these cell surface proteins has so far been limited to in vitro studies or histologic analysis. Here, we present a murine in vivo biotinylation labeling method, which enables the study of glomerular cell surface proteins under physiologic and pathophysiologic conditions. This protocol contains information on how to perfuse mouse kidneys, isolate glomeruli, and perform endogenous immunoprecipitation of a protein of interest. Semi-quantitation of glomerular cell surface abundance is readily available with this novel method, and all proteins accessible to biotin perfusion and immunoprecipitation can be studied. In addition, isolation of glomeruli with or without biotinylation enables further analysis of glomerular RNA and protein as well as primary glomerular cell culture (i.e., primary podocyte cell culture).

Introduction

Proteinuria is a hallmark of glomerular injury and usually accompanies disruption of the glomerular filter1. The glomerular filter is composed of the fenestrated endothelium, glomerular basement membrane, and podocytes. The delicate molecular structure of the glomerular filter is highly dynamic and subject to cell surface protein trafficking in both healthy and diseased kidneys2,3,4,5,6. Endocytosis of cell surface proteins has been shown to be essential for the survival of podocytes....

Protocol

Mice were obtained as an in-house breed from the local animal care facility or from Janvier Labs in France. The investigations were conducted according to the guidelines outlined in the Guide for Care and Use of Laboratory Animals (U.S. National Institutes of Health Publication No. 85-23, revised 1996). All animal experiments were performed in accordance with the relevant institutional approvals (state government LANUV reference number AZ:84-02.04. 2016.A435).

1. Preparation of Instruments, Solu.......

Representative Results

To isolate glomeruli accurately, it is necessary to perfuse murine kidneys with PBSCM first. Perfusion with PBSCM turns kidneys pale (Figure 1A). Embolization of glomeruli with magnetic beads will be visible as brown dots on the kidney surface (Figure 1B). Isolation of glomeruli with the magnet catcher may show contamination with renal tubuli (Figure 1C

Discussion

The presented method enables successful isolation of glomeruli to investigate glomerular RNA or protein. In addition, primary glomerular cell cultures can be performed from the isolated glomeruli. If biotin is applied before glomerular isolation, labeling of glomerular cell surface proteins can be performed. With this method, in vivo glomerular cell surface protein trafficking can be studied, and semi-quantitation of protein abundance is possible. The most critical steps for successfully testing glomerular cell .......

Acknowledgements

The authors thank Blanka Duvnjak for her exceptional technical assistance. This work was supported by Deutsche Forschungsgemeinschaft (www.dfg.de) WO1811/2-1 to M.W. and QU280/3-1 to I.Q. The funder had no role in the study design, data collection, data analysis, decision to publish, and preparation of the manuscript.

....

Materials

NameCompanyCatalog NumberComments
Motic SMZ168 BLMoticSMZ168BLmicroscope for mouse surgery
KL1500LCDPulch and Lorenz microscopy150500light for mouse surgery
Rompun (Xylazin) 2%BayerPZN:01320422anesthesia
MicrofederschereBraun, AesculapFD100Rfine scissors, for cut into the aorta
Durotip Feine ScherenBraun, AesculapBC210Rfor abdominal cut
Anatomische PinzetteBraun, AesculapBD215Rfor surgery until the abdomen is opened
PräparierklemmeAesculapBJ008Rfor surgery 
SeraflexSerag WiessnerIC108000silk thread
Ketamine 10%Medistaranesthesia
Rompun (Xylazin) 2%Bayeranesthesia
Fine Bore Polythene Tubing ID 0.28mm OD 0.61mmPortex800/100/100Catheter
Fine Bore Polythene Tubing ID 0.58mm OD 0.96mmPortex800/100/200Catheter
Harvard apparatus 11 PlusHarvard Apparatus70-2209syringe pump
EZ-link Sulfo-NHC-LC-BiotinThermo Scientific21335biotin
Dynabeads Untouched Mouse T-cellsInvitrogen11413Dto embolize glomeruli
Collagenase ARoche10103578001to digest kidney tissue
DynaMag-2Invitrogen123.21DMagnet catcher
100µm cell stainerGreiner-bio542000for glomerular isolation
Axiovert 40 CFLZeissnon availableto confirm glomerular purity
TissueRuptorQuiagen9002755Tissue homogenizer
CHAPSSigma-AldrichC3023for lysis buffer
Tris-HCLSigma-AldrichT5941for lysis buffer
NaClVWR chemicals27810295for lysis buffer
NaFSigma-Aldrich201154for lysis buffer
EDTASigma-AldrichE5134for lysis buffer
ATPSigma-Aldrich34369-07-8for lysis buffer
Pierce BCA Protein Assay KitThermo Scientific23225Follow the manufacturer's instructions
nephrin antibodyProgenGP-N2for westernblot
Polyclonal goat anti-podocalyxin antibodyR&D SystemsAF15556-SPfor westernblot
Streptavidin Agarose ResinThermo Scientific20347for immunoprecipitation
Protein A sepharose CL-4BGE Healthcare17096303for immunoprecipitation
polyclonal rabbit anti-p57 antibodySCBTsc-8298for Immunohistochemistry
mouse monoclonal anti-beta actin antibody, clone AC-74Sigma-AldrichA2228Western blot loading control
rabbit anti-p44/42cell signalling4695for westernblot
Pierce High sensitivity streptavidin-HRPThermo Scientific21130for westernblot
polyclonal mouse ICAM-2 antibodyR&D SystemsAF774for westernblot
polyclonal mouse anti-VE-cadherinR&D SystemsAF1002for westernblot

References

  1. Jefferson, J. A., Alpers, C. E., Shankland, S. J. Podocyte biology for the bedside. American Journal of Kidney Disease. 58 (5), 835-845 (2011).
  2. Konigshausen, E., et al. Angiotensin II increases glomerular permeability by beta....

Explore More Articles

Glomeruli IsolationIn Vivo LabelingGlomerular Cell Surface ProteinsProteinuric Kidney DiseaseCell Surface Protein TraffickingOrgan PerfusionKidney IsolationAortic PerfusionRenal VeinPBS Perfusion

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved