JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Isolation of Glomeruli and In Vivo Labeling of Glomerular Cell Surface Proteins

Published: January 18th, 2019



1Department of Nephrology, Medical Faculty, Heinrich-Heine-University, 2Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf

Here we present a protocol for murine in vivo labeling of glomerular cell surface proteins with biotin. This protocol contains information on how to perfuse mouse kidneys, isolate glomeruli, and perform endogenous immunoprecipitation of the protein of interest.

Proteinuria results from the disruption of the glomerular filter that is composed of the fenestrated endothelium, glomerular basement membrane, and podocytes with their slit diaphragms. The delicate structure of the glomerular filter, especially the slit diaphragm, relies on the interplay of diverse cell surface proteins. Studying these cell surface proteins has so far been limited to in vitro studies or histologic analysis. Here, we present a murine in vivo biotinylation labeling method, which enables the study of glomerular cell surface proteins under physiologic and pathophysiologic conditions. This protocol contains information on how to perfuse mouse kidneys, isolate glomeruli, and perform endogenous immunoprecipitation of a protein of interest. Semi-quantitation of glomerular cell surface abundance is readily available with this novel method, and all proteins accessible to biotin perfusion and immunoprecipitation can be studied. In addition, isolation of glomeruli with or without biotinylation enables further analysis of glomerular RNA and protein as well as primary glomerular cell culture (i.e., primary podocyte cell culture).

Proteinuria is a hallmark of glomerular injury and usually accompanies disruption of the glomerular filter1. The glomerular filter is composed of the fenestrated endothelium, glomerular basement membrane, and podocytes. The delicate molecular structure of the glomerular filter is highly dynamic and subject to cell surface protein trafficking in both healthy and diseased kidneys2,3,4,5,6. Endocytosis of cell surface proteins has been shown to be essential for the survival of podocytes....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Mice were obtained as an in-house breed from the local animal care facility or from Janvier Labs in France. The investigations were conducted according to the guidelines outlined in the Guide for Care and Use of Laboratory Animals (U.S. National Institutes of Health Publication No. 85-23, revised 1996). All animal experiments were performed in accordance with the relevant institutional approvals (state government LANUV reference number AZ:84-02.04. 2016.A435).

1. Preparation of Instruments, Solu.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To isolate glomeruli accurately, it is necessary to perfuse murine kidneys with PBSCM first. Perfusion with PBSCM turns kidneys pale (Figure 1A). Embolization of glomeruli with magnetic beads will be visible as brown dots on the kidney surface (Figure 1B). Isolation of glomeruli with the magnet catcher may show contamination with renal tubuli (Figure 1C

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The presented method enables successful isolation of glomeruli to investigate glomerular RNA or protein. In addition, primary glomerular cell cultures can be performed from the isolated glomeruli. If biotin is applied before glomerular isolation, labeling of glomerular cell surface proteins can be performed. With this method, in vivo glomerular cell surface protein trafficking can be studied, and semi-quantitation of protein abundance is possible. The most critical steps for successfully testing glomerular cell .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors thank Blanka Duvnjak for her exceptional technical assistance. This work was supported by Deutsche Forschungsgemeinschaft ( WO1811/2-1 to M.W. and QU280/3-1 to I.Q. The funder had no role in the study design, data collection, data analysis, decision to publish, and preparation of the manuscript.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Motic SMZ168 BL Motic SMZ168BL microscope for mouse surgery
KL1500LCD Pulch and Lorenz microscopy 150500 light for mouse surgery
Rompun (Xylazin) 2% Bayer PZN:01320422 anesthesia
Microfederschere Braun, Aesculap FD100R fine scissors, for cut into the aorta
Durotip Feine Scheren Braun, Aesculap BC210R for abdominal cut
Anatomische Pinzette Braun, Aesculap BD215R for surgery until the abdomen is opened
Präparierklemme Aesculap BJ008R for surgery 
Seraflex Serag Wiessner IC108000 silk thread
Ketamine 10% Medistar anesthesia
Rompun (Xylazin) 2% Bayer anesthesia
Fine Bore Polythene Tubing ID 0.28mm OD 0.61mm Portex 800/100/100 Catheter
Fine Bore Polythene Tubing ID 0.58mm OD 0.96mm Portex 800/100/200 Catheter
Harvard apparatus 11 Plus Harvard Apparatus 70-2209 syringe pump
EZ-link Sulfo-NHC-LC-Biotin Thermo Scientific 21335 biotin
Dynabeads Untouched Mouse T-cells Invitrogen 11413D to embolize glomeruli
Collagenase A Roche 10103578001 to digest kidney tissue
DynaMag-2 Invitrogen 123.21D Magnet catcher
100µm cell stainer Greiner-bio 542000 for glomerular isolation
Axiovert 40 CFL Zeiss non available to confirm glomerular purity
TissueRuptor Quiagen 9002755 Tissue homogenizer
CHAPS Sigma-Aldrich C3023 for lysis buffer
Tris-HCL Sigma-Aldrich T5941 for lysis buffer
NaCl VWR chemicals 27810295 for lysis buffer
NaF Sigma-Aldrich 201154 for lysis buffer
EDTA Sigma-Aldrich E5134 for lysis buffer
ATP Sigma-Aldrich 34369-07-8 for lysis buffer
Pierce BCA Protein Assay Kit Thermo Scientific 23225 Follow the manufacturer's instructions
nephrin antibody Progen GP-N2 for westernblot
Polyclonal goat anti-podocalyxin antibody R&D Systems AF15556-SP for westernblot
Streptavidin Agarose Resin Thermo Scientific 20347 for immunoprecipitation
Protein A sepharose CL-4B GE Healthcare 17096303 for immunoprecipitation
polyclonal rabbit anti-p57 antibody SCBT sc-8298 for Immunohistochemistry
mouse monoclonal anti-beta actin antibody, clone AC-74 Sigma-Aldrich A2228 Western blot loading control
rabbit anti-p44/42 cell signalling 4695 for westernblot
Pierce High sensitivity streptavidin-HRP Thermo Scientific 21130 for westernblot
polyclonal mouse ICAM-2 antibody R&D Systems AF774 for westernblot
polyclonal mouse anti-VE-cadherin R&D Systems AF1002 for westernblot

  1. Jefferson, J. A., Alpers, C. E., Shankland, S. J. Podocyte biology for the bedside. American Journal of Kidney Disease. 58 (5), 835-845 (2011).
  2. Konigshausen, E., et al. Angiotensin II increases glomerular permeability by beta-arrestin mediated nephrin endocytosis. Scientific Reports. 6, 39513 (2016).
  3. Quack, I., et al. beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proceedings of the National Academy of Science of the United States of America. 103 (38), 14110-14115 (2006).
  4. Quack, I., et al. PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. Journal of Biological Chemitry. 286 (15), 12959-12970 (2011).
  5. Swiatecka-Urban, A. Endocytic Trafficking at the Mature Podocyte Slit Diaphragm. Frontiers in Pediatrics. 5, 32 (2017).
  6. Swiatecka-Urban, A. Membrane trafficking in podocyte health and disease. Pediatric Nephrology. 28 (9), 1723-1737 (2013).
  7. Soda, K., et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. The Journal of Clinical Investigation. 122 (12), 4401-4411 (2012).
  8. Kestila, M., et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Molecular Cell. 1 (4), 575-582 (1998).
  9. Martin, C. E., Jones, N. Nephrin Signaling in the Podocyte: An Updated View of Signal Regulation at the Slit Diaphragm and Beyond. Frontiers in Endocrinology (Lausanne). 9, 302 (2018).
  10. Nielsen, J. S., McNagny, K. M. The role of podocalyxin in health and disease. Journal of the American Society of Nephrology. 20 (8), 1669-1676 (2009).
  11. Yasuda, T., Saegusa, C., Kamakura, S., Sumimoto, H., Fukuda, M. Rab27 effector Slp2-a transports the apical signaling molecule podocalyxin to the apical surface of MDCK II cells and regulates claudin-2 expression. Molecular Biology of the Cell. 23 (16), 3229-3239 (2012).
  12. Tossidou, I., et al. Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis. Public Library of Science One. 5 (4), 10185 (2010).
  13. Qin, X. S., et al. Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. Journal of the American Society of Nephrology. 20 (12), 2534-2545 (2009).
  14. Waters, A. M., et al. Notch promotes dynamin-dependent endocytosis of nephrin. Journal of the American Society of Nephrology. 23 (1), 27-35 (2012).
  15. Zhang, X., Simons, M. Receptor tyrosine kinases endocytosis in endothelium: biology and signaling. Arteriosclerosis Thrombosis and Vascular Biology. 34 (9), 1831-1837 (2014).
  16. Maes, H., Olmeda, D., Soengas, M. S., Agostinis, P. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. Federation of European Biochemical Societies Journal. 283 (1), 25-38 (2016).
  17. Satchell, S. C., et al. Conditionally immortalized human glomerular endothelial cells expressing fenestrations in response to VEGF. Kidney International. 69 (9), 1633-1640 (2006).
  18. Takemoto, M., et al. A new method for large scale isolation of kidney glomeruli from mice. American Journal of Pathology. 161 (3), 799-805 (2002).
  19. Liu, X., et al. Isolating glomeruli from mice: A practical approach for beginners. Experimental and Therapeutic Medicine. 5 (5), 1322-1326 (2013).
  20. Haase, R., et al. A novel in vivo method to quantify slit diaphragm protein abundance in murine proteinuric kidney disease. Public Library of Science One. 12 (6), 0179217 (2017).
  21. Satoh, D., et al. aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. Journal of Biochemistry. 156 (2), 115-128 (2014).
  22. Tomas, N. M., et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. New England Journal of Medicine. 371 (24), 2277-2287 (2014).
  23. Daniels, G. M., Amara, S. G. Selective labeling of neurotransmitter transporters at the cell surface. Methods in Enzymology. 296, 307-318 (1998).
  24. Ougaard, M. K. E., et al. Murine Nephrotoxic Nephritis as a Model of Chronic Kidney Disease. International Journal of Nephrology. 2018, 8424502 (2018).
  25. Salant, D. J., Darby, C., Couser, W. G. Experimental membranous glomerulonephritis in rats. Quantitative studies of glomerular immune deposit formation in isolated glomeruli and whole animals. Journal of Clinical Investigation. 66 (1), 71-81 (1980).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved