A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The subconcussive soccer heading model is a safe and concise methodological approach to isolate and measure the effects of subconcussive head impacts.
Subconcussive hits pose a threat to neuronal health as they have shown to induce neuronal structural damage and functional impairment without causing outward symptomology and appear to be a key contributor to an irreversible neurodegenerative disease, chronic traumatic encephalopathy (CTE). In addition, athletes can incur more than 1,000 of these hits per season. The subconcussive soccer heading model (SSHM) is a relevant, reproducible, and leading method of isolating and examining the effects of these subconcussive head impacts. By controlling variables such as ball traveling speed, the frequency of impacts, interval, ball placement to the head, as well as by measuring head impact magnitude, the SSHM provides the scientific community with a superior avenue of investigating the acute subconcussive effects on neuronal health. In this paper, we demonstrate the utility of SSHM in studying a time-course expression of neurofilament-light polypeptide (NF-L) in plasma in a repeated measures fashion. NF-L is an axonal injury marker that has previously been shown to be elevated in boxers and football players following subconcussive head trauma. Thirty-four adult aged soccer players were recruited and randomly assigned to either a soccer heading (n = 18) or kicking (n = 16) group. The heading group executed 10 headers with soccer balls projected at a velocity of 25 mph over 10 min. The kicking group followed the same protocol with 10 kicks. Plasma samples were obtained before and at 0 h, 2 h, and 24 h after heading/kicking and assessed for NF-L expressions. The heading group showed a gradual increase in plasma NF-L expression and peaked at 24 h after the heading protocol, whereas the kicking group remained consistent across the time points. These results confirmed the NF-L data from clinical field studies, encouraging the use of SSHM to validate clinical subconcussion data.
Long-term, repetitive exposure to subconcussive head impacts has been proposed as one of the key contributors for developing the neurodegenerative disease CTE1,2,3,4,5. Each year, approximately 2.5 million high school and college athletes engage in contact sports that frequently induce these subconcussive insults through rapid acceleration-deceleration of the body and head6,7. Specifically, contact sport athletes may experience several 100 up to a 1,000 of such impacts per season6,8,9. Additionally, other populations, such as military men and women, have registered more than 300,000 head injuries since 2001, which has manifested into the recent diagnosis of CTE within a retired military veteran10. This diagnosis parallels with 110 postmortem CTE brains of American football players and four postmortem soccer players to present a burgeoning public health issue11,12. In light of the staggering prevalence, head impact research must shift its gaze to incorporate sound, precise methods of analyzing the acute debt subconcussive hits are inducing in a variety of arenas.
The SSHM presented here is one that satisfies the current methodological need to safely induce common mechanical stresses placed upon neural tissue during contact sport activities. The implementation of this model allows investigators to meticulously manage ball traveling speed, the frequency of impacts, interval, ball placement to the head, as well as measurements of head impact magnitude13,14. While these factors are virtually impossible to control in the field setting, the SSHM provides an outlet for researchers to isolate the effects of subconcussive head impacts. Furthermore, through the elimination of confounding variables seen during play (e.g., effects from vigorous exercise, body damage, body temperature change, and hydration/perspiration), the SSHM provides a superior method of validating clinical observations.
The SSHM has direct parallels to head impacts seen specifically within the realm of sport. As such, the literature has already begun to show its utility and corroborate the findings of cumulative head impact burden from other investigators. For example, we have demonstrated that the burden of subconcussive head impacts significantly drive neuro-ophthalmologic dysfunction amongst soccer athletes13,15. In addition, as few as 10 subconcussive impacts have been shown to immediately perturb vestibular function which can be normalized after 24 h of resting16. In this methodological report, we describe the application of SSHM to safely study the effects of subconcussive head impacts and introduce one of our findings that repetitive subconcussive head impacts gradually increase the concentration of a neuron-derived blood biomarker, namely NF-L14. This finding not only substantiates previous results of NF-L presence due to repetitive subconcussive blows to the head17,18 but also validates that the SSHM can reproduce such findings in a controlled clinical manner.
The authors verify that the Indiana University Institutional Review Board approved the study (protocol # 1610743422) and written informed consent was obtained.
NOTE: The SSHM was integrated into a repeated measures design that is intended to investigate changes among dependent variables within subjects at 0 h, 2 h, and 24 h post-intervention compared to individual pre-intervention values. This study design allows researchers to track changes for a 24 h period, which is the typical timeframe between athletic practices. In the present study, soccer players were randomly assigned to either a soccer heading (n = 18) or a soccer kicking group (n = 16).
1. Setup
2. Familiarization trials
3. Intervention
The results represented here were interpreted from a previous article14, in which the SSHM was utilized as previously described. In this particular study, we aimed to show how the SSHM could induce changes in plasma levels of NF-L, which is an axonal injury marker that is hypothesized to filter out of the cranium and into the peripheral blood following head impacts.
SSHM and head kinematics
While contact sports like American football might appear to be driving the need for a concise research model to study subconcussive impacts, other sports like soccer may account for the dominant share of subconcussive exposure around the globe as approximately 265 million people participate in what is perhaps the world’s most popular sport19. However, while the majority of the suspected long-term neurodegenerative effects of subconcussion have been autopsied in American football players, the...
The authors have nothing to disclose.
The authors would like to acknowledge Ms. Angela Wirsching, who was a key contributor to the research we cite in the representative results section.
Name | Company | Catalog Number | Comments |
JUGS Soccer Machine | JUGS Sports | http://jugssports.com/products/soccer-machine.html | |
SIM-G Triaxial Accelerometer | Triax Technologies | https://www.triaxtec.com/workersafety/wp-content/uploads/2017/08/SIM-G-User-Manual_V4-2-01.pdf |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved