A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article provides detailed methods for fabricating and characterizing a pneumatically actuating microfluidic device for chondrocyte compression.
Mechanical stimuli are known to modulate biological functions of cells and tissues. Recent studies have suggested that compressive stress alters growth plate cartilage architecture and results in growth modulation of long bones of children. To determine the role of compressive stress in bone growth, we created a microfluidic device actuated by pneumatic pressure, to dynamically (or statically) compress growth plate chondrocytes embedded in alginate hydrogel cylinders. In this article, we describe detailed methods for fabricating and characterizing this device. The advantages of our protocol are: 1) Five different magnitudes of compressive stress can be generated on five technical replicates in a single platform, 2) It is easy to visualize cell morphology via a conventional light microscope, 3) Cells can be rapidly isolated from the device after compression to facilitate downstream assays, and 4) The platform can be applied to study mechanobiology of any cell type that can grow in hydrogels.
Micro-engineered platforms are valuable tools for studying the molecular, cellular, and tissue level biology because they enable dynamic control of both the physical and chemical microenvironments1,2,3,4,5,6,7,8. Thus, multiple hypotheses can be simultaneously tested in a tightly controlled manner. In the case of growth plate cartilage, there are increasing evidences of an important role of compressive stress in modulating bone growth through action on the growth plate cartilage9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25. However, the mechanism of action of compressive stress – in particular, how stress guides the formation of chondrocyte columns in the growth plate – is poorly understood.
The goal of this protocol is to create a pneumatically actuating microfluidic chondrocyte compression device26 to elucidate mechanisms of mechanobiology in growth plate chondrocytes (Figure 1a-c). The device consists of two parts: the pneumatic actuation unit and the alginate gel construct. The microfluidic pneumatic actuation unit is fabricated using polydimethylsiloxane (PDMS) based on the photo- and soft-lithography. This unit contains a 5 x 5 array of thin PDMS membrane balloons which can be inflated differently based on their diameters. The alginate gel construct consists of the chondrocytes embedded in a 5 x 5 array of alginate gel cylinders, and the entire alginate-chondrocyte constructs are assembled with the actuation unit. The alginate gel constructs are compressed by the pneumatically inflated PDMS balloons (Figure 1b). The microfluidic device can generate five different levels of compressive stress simultaneously in a single platform based on differences in the PDMS balloon diameter. Thus, a high-throughput test of chondrocyte mechanobiology under multiple compression conditions is possible.
The microfluidic device described in this protocol has many advantages over the conventional compression device such as external fixators14,21,23 and macroscopic compression devices16,19,27,28 for studying chondrocyte mechanobiology: 1) The microfluidic device is cost effective because it consumes smaller volume of samples than the macroscopic compression device, 2) The microfluidic device is time effective because it can test multiple compression conditions simultaneously, 3) The microfluidic device can combine mechanical and chemical stimuli by forming a concentration gradient of chemicals based on the limited mixing in microchannels, and 4) Various microscopy techniques (time-lapse microscopy and fluorescence confocal microscopy) can be applied with the microfluidic device made of transparent PDMS.
We adopted and modified the method of Moraes et al.7,29 to create different compressive stress levels in a single device to enable high-throughput mechanobiology studies of chondrocyte compression. Our approach is appropriate for cells (e.g., chondrocytes) which need three-dimensional (3D) culture environment and for biological assays after compressing cells. Although some microfluidic cell compression devices can compress cells cultured on two-dimensional (2D) substrates30,31,32, they cannot be used for chondrocytes because 2D cultured chondrocytes dedifferentiate. There are microfluidic platforms for compressing 3D cultured cells in photopolymerized hydrogels7,33, but they are limited in isolating cells after compression experiments because isolating cells from photopolymerized hydrogel is not easy. Additionally, the effects of ultraviolet (UV) exposure and photo crosslinking initiators on cells may need to be evaluated. In contrast, our method allows rapid isolation of cells after compression experiments for post biological assays because alginate hydrogels can be depolymerized quickly by calcium chelators. The detailed device fabrication and characterization methods are described in this protocol. A brief procedure for fabricating the microfluidic chondrocyte compression device is shown in Figure 2.
NOTE: Wear personal protective equipment (PPE) such as gloves and lab coat for every step in this protocol.
1. Master mold fabrication
NOTE: Perform step 1.1 - 1.3 in a fume hood.
2. Pneumatic actuation unit
3. Alginate-chondrocyte (or bead) constructs
4. Device assembly (Figure 2d)
NOTE: PDMS spacers and 3D printed clamps need to be prepared separately.
5. Actuation of the device
6. Imaging of chondrocytes in the device
NOTE: To obtain a good image quality, image chondrocytes (or fluorescent beads) in alginate gel through Glass plate 2 because expanded PDMS balloons and air chambers can distort optical images. If an inverted microscope is used for imaging, the device needs to be setup so that Glass plate 2 faces downward.
This article shows detailed steps of the microfluidic chondrocyte compression device fabrication (Figure 2). The device contains a 5 x 5 arrays of cylindrical alginate-chondrocyte constructs, and these constructs can be compressed with five different magnitudes of compression (Figure 1, Figure 3 and Figure 4). The height of the pneumatic microchannel is around 90 μm, and the PDMS balloon diame...
To test the effects of compressive stress on growth plate chondrocytes, we developed the microfluidic chondrocyte compression device (Figure 1) to apply various levels of compressive stress to the chondrocytes in the alginate hydrogel scaffold for 3D culture in high throughput ways. To assist other researchers to adopt our device or to develop similar devices, we provided details of the device fabrication steps in this protocol article.
The crucial steps in this p...
The authors have nothing to disclose.
We thank Drs. Christopher Moraes and Stephen A. Morin for their support for device design and fabrication. This study was supported by Bioengineering for Human Health grant from the University of Nebraska-Lincoln (UNL) and the University of Nebraska Medical Center (UNMC), and grant AR070242 from the NIH/NIAMS. We thank Janice A. Taylor and James R. Talaska of the Advanced Microscopy Core Facility at the University of Nebraska Medical Center for providing assistance with confocal microscopy.
Name | Company | Catalog Number | Comments |
(3-Aminopropyl)triethoxysilane (ATPES) | Sigma-Aldrich | 741442-100ML | |
(Tridecafluoro-1, 1, 2, 2-Tetrahydrooctyl)-1-Trichlorosilane | United Chemical Technologies | T2492-KG | |
Acrylic sheet | McMaster-Carr | 8560K354 | |
Air pump | Schwarzer Precision | SP 500 EC-LC4.5V DC | We used the model purchased in 2015. The internal design and performance of air pump (SP 500 EC-LC) changed in early 2016. Also, air pump performance has changed in the course of time. Thus, air pressure generated by an SP 500 EC-LC air pump should be calibrated before use. |
Alginate powder | FMC Corporation | Pronova UP MVG | |
Barb Straight Connectors (Metal tube) | Pneumadyne | EB40-250 | |
Calcein AM | Invitrogen | C3100MP | |
Dulbecco's Modified Eagle Medium (DMEM) | Gibco | 11960-044 | |
Dyed red aqueous fluorescent particles | Thermo Fisher Scientific | R0100 | |
EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) | Thermo Fisher Scientific | 22980 | |
Foam pad | GRAINGER | Item # 5GCE8 | |
Function / Arbitrary Waveform Generator | Keysight Technologies | 33210A | |
Hydrochloric acid | Fisher Chemical | A144-500 | |
Hydrogen peroxide | Fisher BioReagents | BP2633500 | |
Isopropyl alcohol | BDH1174-4LP | VWR | |
Microscope slides | Thermo Fisher Scientific | 22-267-013 | |
Plasma cleaner | Harrick Plasma | PDC-001 | |
Polydimethylsiloxane (PDMS) | Dow Corning | 184 SIL ELAST KIT 0.5KG | |
Power supply | Keysight Technologies | E3630A | |
SeaKem LE Agarose | Lonza | 50004 | |
Sodium hydroxide | Fisher Chemical | S318-1 | |
Solenoid manifold | Pneumadyne | MSV10-1 | |
Solenoid valve | Pneumadyne | S10MM-30-12-3 | |
Spin coater | Laurell Technologies | WS-650Mz-23NPPB | |
SU8 Developer | MicroChem Corp. | Y020100 4000L1PE | |
SU8-100 | MicroChem Corp. | Y131273 0500L1GL | |
SU8-5 | MicroChem Corp. | Y131252 0500L1GL | |
Sulfo-NHS (N-hydroxysulfosuccinimide) | Thermo Fisher Scientific | 24510 | |
Sulfuric acid | EMD Millipore | MSX12445 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved