A subscription to JoVE is required to view this content. Sign in or start your free trial.
Presented here is a protocol to investigate the effects of home-based prescribed pulmonary exercise in stable chronic obstructive pulmonary disease (COPD) patients, which is modified based on traditional Chinese exercises according to dyspnea and limited exercise capacity observed in COPD patients.
As a systemic disease, chronic obstructive pulmonary disease (COPD) affects the respiratory system, inducing restless and exercise dyspnea. It also impacts exercise capacity and forms a vicious circle in which it further aggravates the condition of patients and accelerates disease progression. As a functional holistic exercise, traditional Chinese exercises (TCE) play an important role in the rehabilitation of COPD on the basis of adjusting the breath and performing coordinated movements. This study investigates the effects of prescribed pulmonary exercises (which are modified from TCE) on exercise capacity of upper and lower limbs, endurance exercise capacity, and quality of life in stable COPD patients. The goal is to determine the accessibility of these prescribed exercises in COPD rehabilitation. Participants are randomly divided into a non-exercise control group (CG) or prescribed pulmonary exercise group (PG) at a ratio of 1: 1. The PG receives intervention for 60 min twice per day, 7 days a week, for a total of 3 months. The intensity is measured using the Borg category-ratio 10 scale and with a heart-rate monitor. Then, an exercise capacity test and quality of life questionnaire are scheduled at 1 week before and after the formal intervention. After 3 months of intervention, the 30 s arm curl test, 30 s sit-to-stand test, 6 min walking test, and quality of life show significant improvement in COPD patients (p < 0.05). These findings indicate that prescribed pulmonary exercises can be applied as alternative, convenient, and effective home- and community-based exercises for stable COPD patients.
Chronic non-communicable diseases have gradually become the biggest threat to global health, accounting for 70% of global mortality. A majority of such deaths have been caused by four main diseases, while COPD ranks third and only falls behind cardiovascular disease and cancer. Moreover, the ranking of COPD in leading to years of life lost has risen from eleventh in 2007 to seventh in 20171. This change indicates unsatisfactory effects of current treatments in the rehabilitation of COPD progression. More studies have recognized that COPD is not only a respiratory disease but also a complex, multi-systemic, and multi-complicative condition2,3. COPD complications (i.e., skeletal muscle dysfunction) exist in all stages of the disease and play an important role in progression and prognosis4. Considering interactions between the respiratory symptoms and exercise capacity, rehabilitation of exercise capacity has received a lot of attention.
Pulmonary rehabilitation as a comprehensive intervention program, including but not limited to exercise training, health education, and self-management, has demonstrated effectiveness on physical and psychological condition of COPD patients5. Among the different types of exercise training, aerobic exercise plays a critical role in the improvement of endurance performance and muscle power6. In contrast, resistance exercise shows advantages in the improvement of muscle strength and functional exercise capacity7. Moreover, the interventional mechanisms of these two exercise types are distinct. Compared to resistance exercise, aerobic exercise is more effective in modulating inflammatory cytokine levels and inducing oxidized phenotypes of the quadriceps8,9.
Although the effects of these two conventional exercises in pulmonary rehabilitation has been demonstrated, regardless of the location (in hospital or at home)10,11, implementation of conventional exercise training is still limited due to the requirements of specific equipment, spacious room, and safety monitoring. These constraints not only inflict a burden on a patient’s family but also to the healthcare system. Alternative interventions such as neuromuscular electrical stimulation and whole-body vibration training share the same constraints12,13.
Traditional Chinese exercises (TCE), including tai chi, liu zi jue, wu qin xi, ba duan jin, and yi jin jing, belong to the self-exercise category, which focuses on adjustment of the breath accompanied with coordinated movement. These exercises also rely on psychological-physiological-morphological mechanisms to achieve health-related fitness. Previous studies have shown that 1) TCE as a low-and medium-intensity aerobic exercise induces a maximum heart rate of 43%–49%14, 2) exercise intensity ranges from 1.5 to 2.6 metabolic equivalents of energy (METs)15, and 3) it exerts positive effects in patients with stable COPD through clinical and family rehabilitation16,17,18,19. Compared to conventional exercise training, the advantage of TCE is that it is easy to execute at home without any equipment or spatial constraints.
As a modified TCE, the prescribed pulmonary exercise described in this protocol has been developed from the theory of traditional Chinese medicine and aims at the rehabilitation of COPD dyspnea and exercise capacity. Previous studies have showed significant improvements in the exercise capacity (assessed by 6 min walking test, 6MWT), daily life (Zhongshan COPD questionnaire for quality of life), and systemic inflammation levels in COPD patients after prescribed pulmonary exercise20. However, the effects of prescribed pulmonary exercise on the exercise capacity of upper and lower limbs and quality of life in COPD patients is still unclear.
This study compares 3 months of usual medicinal treatment without exercise intervention (control group, CG) vs. 3 months of prescribed pulmonary exercise intervention (PG) in stable COPD patients to investigate the effects of prescribed pulmonary exercise. The effects on upper limb exercise capacity are evaluated by the 30 s arm curl test, effects on lower limb exercise capacity evaluated by the 30 s sit-to-stand test (30 s SST), effects on endurance exercise capacity evaluated by the 6 min walking test (6MWT), and effects on quality of life evaluated by St. George’s Respiratory Questionnaire (SGRQ).
The protocol has been approved by the Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine affiliated with Shanghai University of Traditional Chinese Medicine (Shanghai, China).
1. Video construction and study design
2. Power calculation
3. Participant recruitment
NOTE: Participant recruitment in this example was conducted in the Department of Respiratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine.
4. Training
5. Outcome assessment
NOTE: Conduct an assessment session within 7 days before and after the formal intervention.
6. Statistical analysis
The protocol above describes a randomized controlled trial to investigate whether prescribed pulmonary exercise improves exercise capacity and quality of life in stable COPD patients. While 44 participants were recruited, only 37 (84%) participants completed the study (CG = 19, PG = 18). Thus, data analysis was carried out using the 37 participants, and the two groups showed no significant differences in basic characteristics including age, sex, BMI, duration, and disease grade (Table 1).
In this study, a modified TCE referred to as prescribed pulmonary exercise is used in an intervention program, and a number of fitness tests are used to investigate the effects of home-based prescribed pulmonary exercise on exercise capacity and quality of life in stable COPD patients. The main finding is that many improvements occurred in upper and lower limb exercise capacity, endurance exercise capacity, and quality of life after 3 months of intervention. The results indicate that prescribed pulmonary exercise as a CO...
The authors have nothing to disclose.
This study was supported by the national fitness project of General Administration of Sport of China (No. 2017B021), the key basic research grants from Science and Technology Commission of Shanghai Municipality (No. 16JC1400500), the directed research grants from Science and Technology Commission of Shanghai Municipality (No. 18DZ1200600), and National Natural Science Foundation of China (No. 81472163).
Name | Company | Catalog Number | Comments |
4643a | Tanita | Used for the evaluation of height, weight, and body mass index | |
Borg CR10 | None | Used for the evaluation of dyapnea | |
PASS 15.0 | NCSS, LLC | Used for power calculation | |
Polar team 2 | Polar | Used for supervising the heart rate of participants | |
SGRQ software | Developed by Peking Union Medical College | Used for calculating the score of quality of life | |
SPSS 24.0 | IBM Corporation | Used for statistical analysis |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved