A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Presented here are protocols for in vitro biochemical assays using biotin labels that may be widely applicable for studying protein-nucleic acid interactions.
Protein-nucleic acid interactions play important roles in biological processes such as transcription, recombination, and RNA metabolism. Experimental methods to study protein-nucleic acid interactions require the use of fluorescent tags, radioactive isotopes, or other labels to detect and analyze specific target molecules. Biotin, a non-radioactive nucleic acid label, is commonly used in electrophoretic mobility shift assays (EMSA) but has not been regularly employed to monitor protein activity during nucleic acid processes. This protocol illustrates the utility of biotin labeling during in vitro enzymatic reactions, demonstrating that this label works well with a range of different biochemical assays. Specifically, in alignment with previous findings using radioisotope 32P-labeled substrates, it is confirmed via biotin-labeled EMSA that MEIOB (a protein specifically involved in the meiotic recombination) is a DNA-binding protein, that MOV10 (an RNA helicase) resolves biotin-labeled RNA duplex structures, and that MEIOB cleaves biotin-labeled single-stranded DNA. This study demonstrates that biotin is capable of substituting 32P in various nucleic acid-related biochemical assays in vitro.
Protein-nucleic acid interactions are involved in many essential cellular processes such as DNA repair, replication, transcription, RNA processing, and translation. Protein interactions with specific DNA sequences within the chromatin are required for the tight control of gene expression at the transcriptional level1. Precise posttranscriptional regulation of numerous coding and noncoding RNAs necessitates extensive and complicated interactions between any protein and RNA2. These layers of gene expression regulatory mechanism comprise a cascade of dynamic intermolecular events, which are coordinated by interactions of tr....
1. Protein preparation
The protein structure of MEIOB and the expression constructs used in this study are illustrated in Figure 1A. OB folds in MEIOB are compact barrel-like structures that can recognize and interact with single-stranded nucleic acids. One of the OB domains (aa 136-307, construct A) binds single stranded DNA (ssDNA), the truncated protein (aa 136-178 truncations, construct C) and the point mutant form (R235A mutation, construct E) of MEIOB do not have DNA-binding activity
Investigating protein-nucleic acid interactions is critical to our understanding of molecular mechanisms underlying diverse biological processes. For example, MEIOB is a testis-specific protein essential for meiosis and fertility in mammals25,26,27. MEIOB contains an OB domain that binds to single-stranded DNA and exhibits 3' to 5' exonuclease activity26, which directly relates to its ph.......
We thank P. Jeremy Wang (University of Pennsylvania) for helpful edits and discussions. We also thank Sigrid Eckardt for language editing. K. Z. was supported by National Key R&D Program of China (2016YFA0500902, 2018YFC1003500) and National Natural Science Foundation of China (31771653). L. Y. was supported by National Natural Science Foundation of China (81471502, 31871503) and Innovative and Entrepreneurial Program of Jiangsu Province. J. N. was supported by Zhejiang Medical Science and Technology Project (2019KY499). M. L. was supported by grants of National Natural Science Foundation of China (31771588) and the 1000 Youth Talent Plan.
....Name | Company | Catalog Number | Comments |
Equipment | |||
Centrifuge | Eppendorf, Germany | 5242R | |
Chemiluminescent Imaging System | Tanon, China | 5200 | |
Digital sonifer | Branson, USA | BBV12081048A | 450 Watts; 50/60 HZ |
Semi-dry electrophoretic blotter | Hoefer, USA | TE77XP | |
Tube Revolver | Crystal, USA | 3406051 | |
UV-light cross-linker | UVP, USA | CL-1000 | |
Materials | |||
Amicon Ultra-4 Centrifugal Filter | Milipore, USA | UFC801096 | 4 ml/10 K |
Nylon membrane | Thermo Scientific, USA | TG263940A | |
TC-treated Culture Dish | Corning, USA | 430167 | 100 mm |
TC-treated Culture Dish | Corning, USA | 430597 | 150 mm |
Microtubes tubes | AXYGEN, USA | MCT-150-C | 1.5 mL |
Tubes | Corning, USA | 430791 | 15 mL |
Reagents | |||
Ampicillin | SunShine Bio, China | 8h288h28 | |
Anti-FLAG M2 magnetic beads | Sigma, USA | M8823 | |
ATP | Thermo Scientific, USA | 591136 | |
BCIP/NBT Alkaline Phosphatase Color Development Kit | Beyotime, China | C3206 | |
CelLyticTM M Cell Lysis Reagent | Sigma, USA | 107M4071V | |
ClonExpress II one step cloning kit | Vazyme, China | C112 | |
Chemiluminescent Nucleic Acid Detection Kit | Thermo Scientific, USA | T1269950 | |
dNTP | Sigma-Aldrich, USA | DNTP100-1KT | |
DMEM | Gibco, USA | 10569044 | |
DPBS buffer | Gibco, USA | 14190-136 | |
EDTA | Invitrogen, USA | AM9260G | 0.5 M |
EDTA free protease inhibitor cocktail | Roche, USA | 04693132001 | |
EndoFree Maxi Plasmid Kit | Vazyme, China | DC202 | |
FastPure Gel DNA Extraction Mini Kit | Vazyme, China | DC301-01 | |
FBS | Gibco, USA | 10437028 | |
FLAG peptide | Sigma, USA | F4799 | |
Glycerol | Sigma, USA | SHBK3676 | |
GST Bulk Kit | GE Healthcare, USA | 27-4570-01 | |
HEPES buffer | Sigma, USA | SLBZ2837 | 1 M |
IPTG | Thermo Scientific, USA | 34060 | |
KoAc | Sangon Biotech, China | 127-08-02 | |
Lipofectamin 3000 Transfection Reagent | Thermo Scientific, USA | L3000001 | |
MgCl2 | Invitrogen, USA | AM9530G | 1 M |
NaCl | Invitrogen, USA | AM9759 | 5 M |
NP-40 | Amresco, USA | M158-500ML | |
Opti-MEM medium | Gibco, USA | 31985062 | |
PBS | Gibco, USA | 10010023 | PH 7.4 |
RNase Inhibitor | Promega, USA | N251B | |
Streptavidin alkaline phosphatase | Promega, USA | V5591 | |
TBE | Invitrogen, USA | 15581044 | |
Tris-HCI Buffer | Invitrogen, USA | 15567027 | 1 M, PH 7.4 |
Tris-HCI Buffer | Invitrogen, USA | 15568025 | 1 M, PH 8.0 |
Tween-20 | Sangon Biotech, China | A600560 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved