A subscription to JoVE is required to view this content. Sign in or start your free trial.
An ex vivo slice assay allows oculomotor nerve outgrowth to be imaged in real time. Slices are generated by embedding E10.5 IslMN:GFP embryos in agarose, slicing on a vibratome, and growing in a stage-top incubator. The role of axon guidance pathways is assessed by adding inhibitors to the culture media.
Accurate eye movements are crucial for vision, but the development of the ocular motor system, especially the molecular pathways controlling axon guidance, has not been fully elucidated. This is partly due to technical limitations of traditional axon guidance assays. To identify additional axon guidance cues influencing the oculomotor nerve, an ex vivo slice assay to image the oculomotor nerve in real-time as it grows towards the eye was developed. E10.5 IslMN-GFP embryos are used to generate ex vivo slices by embedding them in agarose, slicing on a vibratome, then growing them in a microscope stage-top incubator with time-lapse photomicroscopy for 24-72 h. Control slices recapitulate the in vivo timing of outgrowth of axons from the nucleus to the orbit. Small molecule inhibitors or recombinant proteins can be added to the culture media to assess the role of different axon guidance pathways. This method has the advantages of maintaining more of the local microenvironment through which axons traverse, not axotomizing the growing axons, and assessing the axons at multiple points along their trajectory. It can also identify effects on specific subsets of axons. For example, inhibition of CXCR4 causes axons still within the midbrain to grow dorsally rather than ventrally, but axons that have already exited ventrally are not affected.
The ocular motor system provides an elegant system for investigating axon guidance mechanisms. It is relatively uncomplicated, consisting of three cranial nerves innervating six extraocular muscles (EOMs) which move the eye, and the levator palpebrae superioris (LPS) which lifts the eyelid. The oculomotor nerve innervates the LPS and four EOMs - the inferior oblique and the medial, inferior, and superior rectus muscles. The other two nerves, the trochlear and abducens, each only innervate one muscle, the superior oblique and lateral rectus muscle, respectively. Eye movements provide an easy readout, showing if innervation was appropriate, missing, or aberrant. Additio....
All animal work described here was approved and performed in compliance with the Boston Children's Hospital Institutional Animal Care and Use Committee (IACUC) protocols.
1. Timed matings
Normal Results: Figure 1 provides a schematic of the experiment. Starting as early as E9.5 in mouse, the first axons begin to emerge from the oculomotor nucleus26. By E10.5, a fasciculated oculomotor nerve, which contains the early pioneer neurons, can be seen in the mesenchyme. There is significant variability between embryos at E10.5 (even within the same litter) in how far the nerve has progressed towards the orbit, likely due to developmental differences of a few .......
This ex vivo slice culture protocol provides significant advantages over traditional axon guidance assays23. The size of each cranial motor nucleus is not a limiting factor, and no difficult dissection is necessary. The endogenous microenvironment through which the axons travel is maintained, allowing modification of one signaling pathway while maintaining other signaling pathways. Additionally, effects can be assessed at different points along the axon trajectory. Since axon guidance requires mul.......
Funding provided by the National Eye Institute [5K08EY027850], National Institute of Child Health and Development [U54HD090255], Harvard-Vision Clinical Scientist Development Program [5K12EY016335], the Knights Templar Eye Foundation [Career Starter Grant], and the Children’s Hospital Ophthalmology Foundation [Faculty Discovery Award]. ECE is a Howard Hughes Medical Institute investigator.
....Name | Company | Catalog Number | Comments |
24-Well Tissue Culture Plate | Genesee Scientific | 25-107 | |
6-Well Tissue Culture Plate | Genesee Scientific | 25-105 | |
Disposable Pasteur Pipet (Flint Glass) | VWR | 14672-200 | |
Fine Forceps | Fine Science Tools | 11412-11 | |
Fluorobrite DMEM | Thermo Fisher Scientific | A1896701 | |
Glucose (200 g/L) | Thermo Fisher Scientific | A2494001 | |
Hank's Balanced Salt Solution (1X) | Thermo Fisher Scientific | 14175-095 | |
Heat Inactivated Fetal Bovine Serum | Atlanta Biologicals | S11550H | |
HEPES Buffer Solution (1M) | Thermo Fisher Scientific | 15630106 | |
L-Glutamine (250 nM) | Thermo Fisher Scientific | 25030081 | |
Loctite Superglue | Loctite | ||
Low Melting Point Agarose | Thermo Fisher Scientific | 16520050 | |
Millicell Cell Culture Insert (30mm, hydrophilic PTFE, 0.4 um) | Millipore Sigma | PICM03050 | |
Moria Mini Perforated Spoon | Fine Science Tools | 10370-19 | |
Penicillin/Streptomycin (10,000 U/mL) | Thermo Fisher Scientific | 15140122Â | |
Petri Dish (100 x 15mm) | Genesee Scientific | 32-107G | |
Phosphate Buffered Saline (1X, pH 7.4) | Thermo Fisher Scientific | 10010049 | |
Razor Blades | VWR | 55411-050 | |
Surgical Scissors - Blunt | Fine Science Tools | 14000-12 | |
Ti Eclipse Perfect Focus with TIRF | Nikon | ||
Vibratome (VT 1200S) | Leica | 1491200S001 | |
Vibratome Blades (Double Edge, Stainless Steel) | Ted Pella, Inc. | 121-6 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved