A subscription to JoVE is required to view this content. Sign in or start your free trial.
Described here is a simplified standard operating procedure for microbiome profiling using 16S rRNA metagenomic sequencing and analysis using freely available tools. This protocol will help researchers who are new to the microbiome field as well as those requiring updates on methods to achieve bacterial profiling at a higher resolution.
The human gut is colonized by trillions of bacteria that support physiologic functions such as food metabolism, energy harvesting, and regulation of the immune system. Perturbation of the healthy gut microbiome has been suggested to play a role in the development of inflammatory diseases, including multiple sclerosis (MS). Environmental and genetic factors can influence the composition of the microbiome; therefore, identification of microbial communities linked with a disease phenotype has become the first step towards defining the microbiome’s role in health and disease. Use of 16S rRNA metagenomic sequencing for profiling bacterial community has helped in advancing microbiome research. Despite its wide use, there is no uniform protocol for 16S rRNA-based taxonomic profiling analysis. Another limitation is the low resolution of taxonomic assignment due to technical difficulties such as smaller sequencing reads, as well as use of only forward (R1) reads in the final analysis due to low quality of reverse (R2) reads. There is need for a simplified method with high resolution to characterize bacterial diversity in a given biospecimen. Advancements in sequencing technology with the ability to sequence longer reads at high resolution have helped to overcome some of these challenges. Present sequencing technology combined with a publicly available metagenomic analysis pipeline such as R-based Divisive Amplicon Denoising Algorithm-2 (DADA2) has helped advance microbial profiling at high resolution, as DADA2 can assign sequence at the genus and species levels. Described here is a guide for performing bacterial profiling using two-step amplification of the V3-V4 region of the 16S rRNA gene, followed by analysis using freely available analysis tools (i.e., DADA2, Phyloseq, and METAGENassist). It is believed that this simple and complete workflow will serve as an excellent tool for researchers interested in performing microbiome profiling studies.
Microbiota refers to a collection of microorganisms (bacteria, viruses, archaea, bacteriophages, and fungi) living in a particular environment, and the microbiome refers to the collective genome of resident microorganisms. As bacteria are one of the most abundant microbes in humans and mice, this study is focused only on bacterial profiling. The human gut is colonized by trillions of bacteria and hundreds of bacterial strains1. The normal gut microbiota plays a vital role in maintaining a healthy state in the host by regulating functions (i.e., maintenance of an intact intestinal barrier, food metabolism, energy homeostasis, inhibition of colon....
The protocol was approved by the Institutional Animal Care and Use Committee of the University of Iowa.
1. Fecal Sample Collection and Handling
As MHC class II molecules (HLA in humans) are central players in the adaptive immune response and show strong associations with a predisposition to MS24,25,26, it was hypothesized that the HLA class II molecule would influence gut microbial composition. Therefore, mice lacking the MHC class II gene (AE.KO) or expressing human HLA-DQ8 gene (HLA-DQ8) were utilized to understand the importance of HLA class II molecules in shaping t.......
The described protocol is simple, with easy-to-follow steps to perform microbiome profiling using 16S rRNA metagenomic sequencing from a large number of biospecimens of interest. Next-generation sequencing has transformed microbial ecology studies, especially in human and pre-clinical disease models31,32. The main advantage of this technique is its ability to successfully analyze complex microbial compositions (culturable and non-culturable microbes) in a given b.......
The authors acknowledge funding from the NIAID/NIH (1R01AI137075-01), the Carver Trust Medical Research Initiative Grant, and the University of Iowa Environmental Health Sciences Research Center, NIEHS/NIH (P30 ES005605).
....Name | Company | Catalog Number | Comments |
1.5 ml Natural Microcentriguge Tube | USA, Scientific | 1615-5500 | Fecal collection |
3M hand applicator squeegee PA1-G | 3M, MN, US | 7100038651 | Squeeger for proper sealing of PCR Plate |
Agencourt AMPure XP | Beckman Coulter, IN, USA | A63880 | PCR Purification, NGS Clean-up, PCR clean-up |
Agilent DNA 1000 REAGENT | Agilent Technologies, CA, USA | 5067-1504 | DNA quantification and quality control |
Bioanalyzer DNA 1000 chip | Agilent Technologies, CA, USA | 5067-1504 | DNA quantification and quality control |
Index Adopter Replacement Caps | Illumina, Inc., CA, USA | 15026762 | New cap for Index 1 and 2 adopter primer |
DNeasy PowerLyzer PowerSoil Kit | MoBio now part of QIAGEN, Valencia, CA, USA | 12855-100 | DNA isolation |
KAPA HiFi HotStart ReadyMiX (2X) | Kapa Biosystem, MA, USA | KK2602 | PCR ready mix for Amplicon PCR1 and Indexed PCR2 |
Lewis Divider Boxes | Lewis Bins, WI, US | ND03080 | Fecal collection |
Magnetic stand | New England BioLabs, MA, USA | S1509S | For PCR clean-up |
MicroAmp Fast Optical 96-Well Reaction Plate | Applied Biosystems, Thermo Fisher Scientific, CA, USA | 4346906 | PCR Plate |
MicroAmp Optical Adhesive Film | Applied Biosystems, Thermo Fisher Scientific, CA, USA | 4311971 | PCR Plate Sealer |
Microfuge 20 Centrifuge | Beckman Coulter, IN, USA | B30154 | Centrifuge used for DNA isolation |
MiSeq Reagent Kit (600 cycles)v.3 | Illumina, Inc., CA, USA | MS-102-3003 | For MiSeq Sequencing |
Nextera XT DNA Library Preparation Kit | Illumina, Inc., CA, USA | FC-131-1001 | 16S rRNA DNA Library Preparation |
Reagent Reservoirs Multichannel Trays | ASI, FL,USA | RS71-1 | For Pooling of PCR2 Product |
Plate Cetrifuge | Thermo Fisher Scientific, CA, USA | 75004393 | For PCR reagent mixing and removing air bubble from Plate |
PhiX Control | Illumina, Inc., CA, USA | FC-110-3001 | For MiSeq Sequencing control |
Microbiome DNA Purification Kit | Thermo Fisher Scientific, CA, USA | A29789 | For purification of PCR1 product |
PowerLyzer 24 Homogenizer | Omni International, GA, USA | 19-001 | Bead beater for DNA Isolation |
Qubit dsDNA HS (High Sensitivity) assay kit | Thermo Fisher Scientific, CA, USA | Q32854 | DNA quantification |
TruSeq Index Plate Fixture | Illumina, Inc., CA, USA | FC-130-1005 | For Arranging of the index primers |
Vertical Dividers (large) | Lewis Bins, WI, US | DV-2280 | Fecal collection |
Vertical Dividers (small) | Lewis Bins, WI, US | DV-1780 | Fecal collection |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved