A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, a step-by-step protocol for the preparation and cultivation of porcine split corneal buttons is presented. As this organo-typically cultivated organ culture model shows cell death rates within 15 days, comparable to human donor corneas, it represents the first model allowing long-term cultivation of non-human corneas without adding toxic dextran.
Experimental research on corneal endothelial cells is associated with several difficulties. Human donor corneas are scarce and rarely available for experimental investigations as they are normally needed for transplantation. Endothelial cell cultures often do not translate well to in vivo situations. Due to the biostructural characteristics of non-human corneas, stromal swelling during cultivation induces substantial corneal endothelial cell loss, which makes it difficult to perform cultivation for an extended period of time. Deswelling agents such as dextran are used to counteract this response. However, they also cause significant endothelial cell loss. Therefore, an ex vivo organ culture model not requiring deswelling agents was established. Pig eyes from a local slaughterhouse were used to prepare split corneal buttons. After partial corneal trephination, the outer layers of the cornea (epithelium, bowman layer, parts of the stroma) were removed. This significantly reduces corneal endothelial cell loss induced by massive stromal swelling and Descemet's membrane folding throughout longer cultivation periods and improves general preservation of the endothelial cell layer. Subsequent complete corneal trephination was followed by the removal of the split corneal button from the remaining eye bulb and cultivation. Endothelial cell density was assessed at follow-up times of up to 15 days after preparation (i.e., days 1, 8, 15) using light microscopy. The preparation technique used allows a better preservation of the endothelial cell layer enabled by less stromal tissue swelling, which results in slow and linear decline rates in split corneal buttons comparable to human donor corneas. As this standardized organo-typically cultivated research model for the first time allows a stable cultivation for at least two weeks, it is a valuable alternative to human donor corneas for future investigations of various external factors with regards to their effects on the corneal endothelium.
Corneal transplantation procedures are among the most commonly performed transplantations worldwide1. As there is a severe shortage of human donor corneas, experimental research addressing corneal endothelial cells in human corneas is difficult to perform1. However, the introduction of irrigation solutions and other substances used within the eye, ophthalmic viscoelastic devices, as well as surgical instruments and techniques (e.g., phacoemulsification instruments and techniques, ultrasound energy) requires valid and extensive investigations regarding their effects on the corneal endothelium before clinical use.
This protocol follows the ethical guidelines of our institution. In accordance with the statutes of our institution's ethical review committee no ethical approval had to be obtained prior to the experiments, as all porcine corneas were obtained from the local slaughterhouse.
1. Organ culture
The presented dissection technique implies partial removal of stromal tissue, resulting in a thinner cornea sample and thus less stromal swelling (Figure 1 and Figure 2). Less stromal swelling induces less shear and pinch forces that have a negative impact on the corneal endothelium, thus causing lower endothelial cell loss rates6. Split corneal buttons show a significantly better-preserved endothelial cel.......
This protocol provides a method for the preparation of porcine split corneal buttons, which represents a standardized and low-cost ex vivo corneal endothelial organ culture model for research purposes6. Porcine split corneal buttons showed a decrease of the endothelial cell density comparable to endothelial cell losses observed in human donor corneas cultivated in eye banks over a two-week period6,10,11
The establishment of the presented research model was supported by KMU-innovativ (FKZ: 13GW0037F) of the Federal Ministry of Education and Research Germany.
....Name | Company | Catalog Number | Comments |
Subject | |||
Pig eyes | local abbatoir | ||
Substances | |||
Alizarin red S | Sigma-Aldrich, USA | ||
Culture Medium 1, #F9016 | Biochrom GmbH, Germany | ||
Dulbecco's PBS (1x) | Gibco, USA | ||
Fetal calf serum | Biochrom GmbH, Germany | ||
Hydrochloric acid (HCl) solution | own production | ||
Hypotonic balanced salt solution | own production | per 1 L of H2O: NaCl 4.9 g; KCl 0.75 g; CaCl x H2O 0.49 g; MgCl2 x H2O 0.3 g; Sodium Acetate x 3 H2O 3.9 g; Sodium Citrate x 2 H2O 1.7 g | |
Povidon iodine 7.5%, Braunol | B. Braun Melsungen AG, Germany | ||
Sodium chloride (NaCl) 0.9% | B. Braun Melsungen AG, Germany | ||
Sodium hydroxide (NaOH) solution | own production | ||
Trypan blue 0.4% | Sigma-Aldrich, USA | ||
Materials & Instruments | |||
Accu-jet pro | Brand GmbH, Germany | ||
Beaker Glass 50 mL | Schott AG, Germany | ||
Blunt cannula incl. Filter (5 µm) 18G | Becton Dickinson, USA | ||
Cell culture plate (12 well) | Corning Inc., USA | ||
Colibri forceps | Geuder AG, Germany | ||
Corneal scissors | Geuder AG, Germany | ||
Eppendorf pipette | Eppendorf AG, Germany | ||
Eye Bulb Holder | L. Klein, Germany | ||
Eye scissors | Geuder AG, Germany | ||
Folded Filter ø 185 mm | Whatman, USA | ||
Hockey knife | Geuder AG, Germany | ||
Laboratory Glass Bottle with cap 100 mL | Schott AG, Germany | ||
Magnetic stir bar | Carl Roth GmbH & Co. KG, Germany | ||
MillexGV Filter (5 µm) | Merck Millopore Ltd., USA | ||
Needler holder | Geuder AG, Germany | ||
Petri dishes | VWR International, USA | ||
Pipette tips | Sarstedt AG & Co., Germany | ||
Scalpel (single use), triangular blade | Aesculap AG & Co. KG, Germany | ||
Serological pipette 10 mL | Sarstedt AG & Co., Germany | ||
Serological pipette 5 mL | Sarstedt AG & Co., Germany | ||
Sterile cups | Greiner Bio-One, Österreich | ||
Sterile gloves | Paul Hartmann AG, Germany | ||
Sterile surgical drape | Paul Hartmann AG, Germany | ||
Stitch scissors | Geuder AG, Germany | ||
Suture Ethilon 10-0 Polyamid 6 | Ethicon Inc., USA | ||
Syringe (5 mL) | Becton Dickinson, USA | ||
trephine ø 7.5 mm | own production | ||
Tying forceps | Geuder AG, Germany | ||
Weighing paper | neoLab Migge GmbH, Germany | ||
Equipment & Software | |||
Binocular surgical microscope | Carl Zeiss AG, Germany | ||
Camera mounted on microscope | Olympus, Japan | ||
CellSens Entry (software) | Olympus, Japan | ||
Cold-light source | Schott AG, Germany | ||
Incubator | Heraeus GmbH, Germany | ||
Inverted phase contrast microscope | Olympus GmbH, Germany | ||
Magnetic stirrer with heating function | IKA-Werke GmbH & Co. KG, Germany | ||
pH-meter pHenomenal | VWR International, USA | ||
Photoshop CS2 | Adobe Systems, USA | ||
Precision scale | Ohaus Europe GmbH, Switzerland |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved