Sign In
A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol describes the use of a highly palatable, western-style cafeteria diet to model overeating and obesity in rodents. Here, we provide a detailed outline of food selection, preparation and measurement, and explain methodological factors that assist in generating a robust and reproducible phenotype.
Obesity is rapidly increasing in incidence in developed and developing countries and is known to induce or exacerbate many diseases. The health burden of obesity and its comorbid conditions highlight the need for better understanding of its pathogenesis, yet ethical constraints limit studies in humans. To this end externally valid models of obesity in laboratory animals are essential for the understanding of being overweight and obesity. While many species have been used to model the range of changes that accompany obesity in humans, rodents are most commonly used. Our laboratory has developed a western-style cafeteria diet that consistently leads to considerable weight gain and markers of metabolic disease in rodents. The diet exposes rodents to a variety of highly palatable foods to induce hyperphagia, modeling the modern western food environment. This diet rapidly induces weight gain and body fat accumulation in rats allowing for the study of effects of overeating and obesity. While the cafeteria diet may not provide the same control over macronutrient and micronutrient profile as purified high-fat or high-fat, high-sugar diets, the cafeteria diet typically induces a more severe metabolic phenotype than that observed with purified diets and is more in line with metabolic disturbances observed in the overweight and obese human population.
Obesity and its related comorbidities make an enormous contribution to global health burden1 and account for 7% of disease burden in Australia2. A leading risk factor for obesity is consumption of unhealthy diets that are high in saturated fat and refined carbohydrates, and low in fiber and micronutrients3. Identifying targets for therapeutic intervention for obesity requires models that can systematically assess effects on multiple biochemical and physiological systems. Our understanding of the etiology of obesity has been advanced substantially by work using rodent models, where behavioral, metabolic and molecular effects can be studied across time under controlled conditions where environmental factors can be easily manipulated.
The cafeteria diet (CAF) model of diet-induced obesity consists of supplementing rodents' standard chow diet with a variety of palatable foods that are high in either saturated fat, refined carbohydrates, or both. Examples of these foods include cakes, sweet biscuits, and high-fat savory snacks (such as processed meats, cheese and chips). It reliably promotes hyperphagia and rapid weight gain in rodents. The key features of the model are the provision of a variety of highly palatable foods, designed to simulate the modern food environment. Access to variety increases food intake in rats over the short-term4 and in humans5 even when the foods are matched for palatability and vary only in flavor and olfactory cues4,6. However, one study showed that providing energy- and macronutrient-matched purified diets that varied in flavor and texture had no effect on long-term body weight gain in rats7, suggesting that nutrient composition and distinct post-oral effects of different foods may also contribute to overeating. Exposure to multiple tastes and textures overcomes sensory-specific satiety, which describes the decrease in desire to eat a recently eaten food relative to an alternative5. Across many cohorts in our laboratory, we have similarly observed that the use of highly palatable foods further amplifies overeating.
This CAF diet has been used for over 40 years, since Sclafani8 reported that female rats exposed to an assortment of ‘supermarket foods' (marshmallows, chocolate, peanut butter, cookies, salami and cheese among them) exhibited accelerated weight gain relative to controls. This and other early studies noted that CAF-style diets appeared to accelerate weight gain more effectively than pure high-fat or high-carbohydrate diets 8,9. Work in the 1980s characterized the macronutrient profiles10 and meal patterns11 of rats fed CAF diets, and showed profound changes to fat mass and insulin levels9,10 and thermogenesis12. Our group has used the CAF diet to model obesity for over two decades13,14 and during this time we have used several variants of the diet. Rats are presented with at least two sweet and two savory food items each day, in addition to regular chow and water. In recent years we have begun to supplement solid CAF foods with 10% sucrose solution. The ability to tailor the CAF diet to different experimental designs is a strength of the model.
CAF diets promote immediate hyperphagia (i.e., within the first 24 h) and steady gains in body weight and fat mass. However, a consequence of maximizing variety is that macronutrient and micronutrient intake is not controlled, a point some view as an insurmountable flaw15. Studies of diet-induced obesity more commonly use purified high-fat (HF) or combined high-fat, high-sugar (HFHS) diets, which offer precise control over nutritional content and are less labor-intensive than the CAF model, which requires daily monitoring and careful planning and execution of the schedule. The translational relevance of commercially available purified HF diets is a topic of ongoing debate, as their fatty acid profile and proportions of fat and sucrose may not align with human dietary intake16. While CAF diet does not offer the same degree of control over nutrient composition as purified diets, it aims to model the palatability and variety that characterizes food options in most modern societies.
The protocol described here has been optimized for use in rats. While we have used the CAF diet successfully in mice17,18, soft food grinding may introduce further error reducing the reliability of food intake measures19. This protocol is approved by the Animal Care and Ethics Committee at the University of New South Wales and complies with the Australian guidelines for the use and care of animals for scientific purposes (8th Edition) provided by the Australian National Health and Medical Research Council.
NOTE: Very few adverse effects have been observed in our short-term studies (i.e. <10 weeks ad libitum CAF access); there is no evidence of changes to general wellbeing, activity, sociability or anxiety-like behavior in rats on CAF diet20. After longer intervals (>16 weeks) very occasional cardiovascular incidents have been observed in CAF-fed rats.
1. Animal Acclimatization and Housing
2. Diet Selection and Setup
3. Cafeteria Diet Preparation
4. Food Intake Over 24 H
NOTE: Food intake measurements are conducted over a discrete 24 h period several times per week.
As shown in Figure 2A, CAF diet feeding produces a 2.5-fold increase in energy intake relative to chow controls, based on data from three cohorts of male Sprague Dawley rats, that is consistent over 6 weeks. Other studies have confirmed that this extent of hyperphagia is sustained over 1021 and 1622 week experiments. The weight curve (Figure 2B) indicates CAF diet feeding leads to ...
By exposing rats to a variety of highly palatable foods high in fat and sugar, the CAF diet protocol described here provides a reliable and robust model of the so-called ‘western diet’ eaten by many people. Hyperphagia—assessed as a significant increase in energy intake relative to controls—is observed within the first 24 h of exposure, with statistically significant body weight differences seen within weeks. Thus, CAF is an effective model of diet-induced obesity for rodents.
The authors declare no competing interests or disclosures.
The work was supported by NHMRC project grants (#568728, #150262, #1126929) to MJM.
Name | Company | Catalog Number | Comments |
2-5 L plastic bottle | For preparing 10% sucrose solution, if applicable | ||
Chopping board | Plastic is advised | ||
Freezer | For storing CAF foods | ||
Gordon's maintenance rodent chow | Gordon's Specialty Stockfeeds (Australia) | Maintenance diet used in our laboratory (14 kJ/g; 65% carb, 13% fat and 22% protein, as energy) | |
Large plastic storage boxes | All items above can be stored in containers for easy access | ||
Large spoon | For CAF diet preparation | ||
Microwave | For CAF diet thawing (when required) | ||
Non-serrated knife | For CAF diet preparation | ||
Paper towel | Important for cleaning work surfaces and the knife during CAF prep | ||
Plastic containers | These are for weighing CAF food items on measurement days | ||
Plastic funnel | For preparing 10% sucrose solution, if applicable | ||
Red light | As CAF diet should be refreshed near the onset of the dark phase each day, a red light will assist when working in the dark | ||
Tuna tins | For presenting 'wetter' CAF food items. Plastic containers may also be suitable | ||
Weigh container x 3 | Separate containers should be used to weigh rats, chow & bottles, and CAF foods | ||
Weighing scale | Sensitivity to 0.1g is recommended | ||
White sugar | For 10% sucrose solution, if applicable |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.