A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The perception of gravity is commonly determined by the subjective visual vertical in the head upright position. The additional assessment at head tilts of ± 15° and ± 30° in the roll plane ensures increased information content for the detection of impaired graviceptive perception.
Vestibular disorders are among the most common syndromes in medicine. In recent years, new vestibular diagnostic systems have been introduced that allow the examination of all semicircular canals in the clinical setting. Assessment methods of the otolithic system, which is responsible for the perception of linear acceleration and perception of gravity, are far less in clinical use. There are several experimental approaches for measuring the perception of gravity. The most frequently used method is the determination of the subjective visual vertical. This is usually measured with the head in an upright position. We present here an assessment method for testing otolith function in the roll plane. The subjective visual vertical is measured in the head upright position as well as with head inclination of ± 15° and ± 30° in the roll plane. This extended functional paradigm is an easy-to-perform clinical test of otolith function and ensures increased information content for the detection of impaired graviceptive perception.
Impairment of otolith function can be caused by peripheral as well as by central vestibular conditions1. Peripheral vestibular causes include Meniere's disease, labyrinth infarction, as well as superior or inferior vestibular neuritis. Central otolith dysfunction can occur in lesions of central otolithic pathways from brain stem via thalamus2 to the vestibular cortex3. In addition, diminished otolith reflexes are also found in cerebellar disorders4. While a number of standardized methods, such as caloric testing or video-head impulse test, are available for the assessment of semicircular canal function, no standardized clinical measurement method exists for gravity estimation and verticality perception5.
Since the otoliths are responsible for the perception of linear acceleration, otolith function can in principle be measured by linear acceleration by recording the so-called translational vestibulo-ocular reflex (t-VOR). However, this requires the use of special and complex equipment such as a parallel swing or linear sleds4,6. For the assessment of unilateral saccular and utricular function a specific off-center centrifugation test has been developed, which could be used clinically in balance laboratories with a specific rotational chair system7. When displacing the head by 3.5–4 cm from the rotation axis, the eccentrically positioned utricle is stimulated unilaterally by a resultant centrifugal force. In this paradigm otolith function can be determined either by measuring the resulting eye torsion or the subjective visual vertical (SVV). This procedure, however, also requires sophisticated equipment and the method still shows limited sensitivities for both SVV and eye torsion assessment7. Otolith function can further be quantified through eye movement recordings. Assessment can be done in horizontal or linear acceleration, but also during head- or body tilt in the roll plane with application of 3-D videooculography. The latter allows determination of ocular torsion. The clinical application of this method is also limited due to its low sensitivity8. The perception of body verticality (i.e., the sensation that I feel my body aligned with the true vertical) can be assessed by means of the so-called subjective postural vertical. In this experimental task, patients are seated in a chair in a motorized gimbal and asked to indicate when they entered and exited the upright position, while being tilted 15 ° in the pitch or roll plane. The disadvantage of this technique is not only its elaborate experimental approach, but also that it measures both otolith and body proprioceptive signals9. Whether vestibular evoked myogenic potentials (VEMPs) are useful clinical screening tools for otolith function in various clinical disorders is still controversial10,11.
Visual tasks are currently the most frequently used clinical methods for measuring graviceptive function, which can be assessed through measurement of the subjective visual vertical (SVV)12. Seen from a precise physiological perspective, SVV is not a direct test of the otolith function alone, as the SVV is the result of a weighting between several sources of information (gravity, proprioceptive and also visual when they are available). However, for rapid clinical use, an easy application of this SVV task, the so-called bucket test, has been developed13 especially for the emergency setting, enabling immediate detection of acute disturbances of graviceptive perception. The more precise and standardized procedure consists of letting an observer align a light bar or rod with the estimated vertical. Tested in darkness in healthy individuals in an upright position, deviations are limited to ± 2° from the earth vertical14. Using the SVV task, graviceptive function has so far been assessed in a variety of neurological conditions such as stroke15,16 or Parkinson’s disease17. Furthermore, impaired SVV-perception has also been reported in unilateral18,19 or bilateral vestibular lesions20, as well as in patients with benign paroxysmal positional nystagmus21.
We here present a modified SVV assessment method, which measures SVV estimates not only in head-upright position but also at ± 15° and ± 30° head tilts in the roll plane. This paradigm increases the information content for the detection of graviceptive deficits and for systematic tilts of the SVV.
The study was approved by the ethical committee of the Medical University of Vienna and has been performed in accordance with the ethical standards found in the Declaration of Helsinki. An informed consent was signed by all patients and controls before the study.
1. Installation of the patient in the chair
2. Installation of the SVV unit
3. Calibration under visual control
4. SVV setting in neutral head position
5. SVV setting with head tilt
SVV assessment was performed using a rotational chair system (Figure 1a) comprising a tiltable headrest and an adjustable LED light bar. The SVV adjustments were recorded via an infrared camera from a goniometer display on the back of the lightbar (Figure 1b). The devices used and the test protocol correspond exactly to the test methods presented here.
SVV measurement was performed in 13 healthy individuals at a mean age of 52.8 years...
SVV is a method to ensure the sense of verticality. It results from the integration of several information. The vestibular system being of paramount importance in this perception, it has been shown that a lesion at any level of vestibular information pathway leads to SVV errors.
The measurement of SVV in the head upright position is now regarded as the clinical standard method for recording otolith function. However, this method is hampered by low sensitivity as SVV-deviations in darkness in h...
The authors have nothing to disclose.
The authors have no acknowledgements.
Name | Company | Catalog Number | Comments |
Adjustable plastic goniometer board 7,87" x 7,87", (marked tilt angles of 0°, 15° and 30° ) | self-produced | 6 | for fixation at the backrest and for adjustment of neckrest along the given tilt angles (0°,15°,30°) |
Elastic head band with adjustable screw on the back | Micromedical Technologies Inc | 4 | modified with attached adhesive strap |
HD LCD display, 1366 x 768p resolution, 19" | Philips | 5 | for monitoring SVV-adjustments outside the cabin (infrared camera recording) |
Subjective Visual Vertical Set including infrared video camera (black/white, resolution 0,25°) | Micromedical Technologies Inc | 2 | |
Sytem 2000 (Rotational Vestibular Chair System with Centrifuge) | Micromedical Technologies Inc., 10 Kemp Dr., Chatham, IL 62629-9769 United States | 1 | |
Tiltable headrest | Micromedical Technologies Inc | 3 | modified with attached adhesive strap |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved