A subscription to JoVE is required to view this content. Sign in or start your free trial.
Development of major adverse cardiovascular events, which impact cardiovascular prognosis after coronary angioplasty, are influenced by the extent of coronary damage and vascular repair. The use of novel coronary cellular and soluble biomarkers, reactive to vascular damage and repair, are useful to predict the development of MACEs and prognosis.
Major adverse cardiovascular events (MACEs) negatively impact the cardiovascular prognosis of patients undergoing coronary angioplasty due to coronary ischemic injury. The extent of coronary damage and the mechanisms of vascular repair are factors influencing the future development of MACEs. Intrinsic vascular features like the plaque characteristics and coronary artery complexity have demonstrated prognostic information for MACEs. However, the use of intracoronary circulating biomarkers has been postulated as a convenient method for the early identification and prognosis of MACEs, as they more closely reflect dynamic mechanisms involving coronary damage and repair. Determination of coronary circulating biomarkers during angioplasty, such as the number of subpopulations of mononuclear progenitor cells (MPCs) as well as the concentration of soluble molecules reflecting inflammation, cell adhesion, and repair, allows for assessment of future developments and the prognosis of MACEs 6 months post coronary angioplasty. This method is highlighted by its translational nature and better performance than peripheral blood circulating biomarkers regarding prediction of MACEs and its effect on the cardiovascular prognosis, which may be applied for risk stratification of patients with coronary artery disease undergoing angioplasty.
Coronary angioplasty and stenting represent a salvage procedure for patients with coronary artery disease (CAD). However, major adverse cardiovascular events (MACEs), including cardiovascular death, myocardial infarction, coronary restenosis, and episodes of angina or decompensate heart failure, may occur months after coronary intervention, prompting unscheduled visits to the hospital. MACEs are common worldwide and their morbi-mortality is high1.
Coronary ischemic injury induces early vascular response and reparative mechanisms involving mobilization of MPCs due to their differentiation ability and/or angio-reparati....
This protocol meets the institutional guidelines from the human research Ethics Committee.
1. Coronary Angiography, Ultrasound, and Blood Sampling
Coronary, venous sinus, and peripheral blood were collected from 52 patients that underwent coronary angiography (Figure 1) and showed a high prevalence of hypertension and dyslipidemia. At the clinical follow-up, 11 (21.1%) MACEs occurred 6 months after coronary angiography: death (n = 1), angina requiring hospital attendance (n = 6), myocardial infarction (n = 2), and/or evidence of heart failure (n = 4).
Blood collection from the affected coronary artery may be difficult. Sometimes, the coronary artery is barely accessible. In this case, sampling from the venous sinus may be an alternative. We performed validation tests comparing circulating biomarkers in coronary artery vs. venous sinus, with no significant differences. However, the performance of circulating biomarkers was validated only for coronary sampling. Therefore, the performance of biomarkers obtained from the venous sinus remains to be explored.
The authors thank the support of Institutional Program E015; and Fondo Sectorial FOSSIS-CONACYT, SALUD-2014-1-233947.
....Name | Company | Catalog Number | Comments |
BSA | Roche | 10735086001 | Bovine Serum Albumin (BSA) as a buffering agent, stabilizer, standard and for blending. |
Calibration Beads | Miltenyi Biotec / MACS | #130-093-607 | MACQuant calibration beads are supplied in aqueous solution containing 0.05% sodium azide. 3.5 ml for up to 100 tests |
CD133/1 (AC133)-PE | Milteny Biotec / MACS | #130-080-801 | Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer |
CD184 (CXCR4)-PE-VIO770 | Miltenyi Biotec / MACS | #130-103-798 | Monoclonal, Isotype recombinant human IgG1, conjugated |
CD309 (VEGFR-2/KDR)-APC | Miltenyi Biotec / MACS | #130-093-601 | Antibody conjugated to R-Phycoerythrin in PBS/EDTA buffer |
CD34-FITC | Miltenyi Biotec / MACS | #130-081-001 | The monoclonal antibody clone AC136 detecs a class III epitope of the CD34 |
CD45- VioBlue | Miltenyi Biotec / MACS | #130-092-880 | Monoclonal CD45 Antibody, human conjugated |
Conical Tubes | Thermo SCIENTIFIC | #339651 | 15ml conical centrifuge tubes |
Cytometry Tubes | FALCON Corning Brand | #352052 | 5 mL Polystyrene Round-Bottom Tube. 12x75 style. Sterile. |
EDTA | BIO-RAD | #161-0729 | Heavy metals, (as Pb) <10ppm, Fe <0.01%, As <1ppm, Insolubles <0.005% |
Improved Neubauer | Without brand | Without catalog number | Hemocytometer for cell counting. (range 0.1000mm, 0.0025mm2) |
K2 EDTA Blood Collection Tubes | BD Vacutainer | #367863 | Lilac plastic vacutainer tube (K2E) 10.8mg, 6 mL. |
Lymphoprep | Stemcell Technologies | 01-63-12-002-A | Sterile and checked on the presence of endotoxins. Density: 1.077±0.001g/mL |
Paraformaldehyde | SIGMA-ALDRICH | #SZBF0920V | Fixation of biological samples, (powder, 95%) |
Pipette Transfer 1,3mL | CRM Globe | PF1016, PF1015 | The transfer pipette is a tool that facilitates liquid transfer with greater accuracy. |
Test Tubes | KIMBLE CHASE | 45060 13100 | Heat-resistant test tubes. SIZE/CAP 13 x 100 mm |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved