Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a protocol for the recording of muscle velocity recovery cycles (MVRCs), a new method of examining muscle membrane properties. MVRCs enable in vivo assessment of muscle membrane potential and alterations in muscle ion channel function in relation to pathology, and it enables the demonstration of muscle depolarization in neurogenic muscles.

Abstract

Although conventional nerve conduction studies (NCS) and electromyography (EMG) are suitable for the diagnosis of neuromuscular disorders, they provide limited information about muscle fiber membrane properties and underlying disease mechanisms. Muscle velocity recovery cycles (MVRCs) illustrate how the velocity of a muscle action potential depends on the time after a preceding action potential. MVRCs are closely related to changes in membrane potential that follow an action potential, thereby providing information about muscle fiber membrane properties. MVRCs may be recorded quickly and easily by direct stimulation and recording from multi-fiber bundles in vivo. MVRCs have been helpful in understanding disease mechanisms in several neuromuscular disorders. Studies in patients with channelopathies have demonstrated the different effects of specific ion channel mutations on muscle excitability. MVRCs have been previously tested in patients with neurogenic muscles. In this prior study, muscle relative refraction period (MRRP) was prolonged, and early supernormality (ESN) and late supernormality (LSN) were reduced in patients compared to healthy controls. Thereby, MVRCs can provide in vivo evidence of membrane depolarization in intact human muscle fibers that underlie their reduced excitability. The protocol presented here describes how to record MVRCs and analyze the recordings. MVRCs can serve as a fast, simple, and useful method for revealing disease mechanisms across a broad range of neuromuscular disorders.

Introduction

Nerve conduction studies (NCS) and electromyography (EMG) are the conventional electrophysiological methods used for the diagnosis of neuromuscular disorders. NCS enables detection of axonal loss and demyelination in the nerves1, while EMG can differentiate whether myopathy or neurogenic changes are present in the muscle due to nerve damage. However, NCS or EMG provide limited information about muscle fiber membrane properties and underlying disease mechanisms. This information can be achieved using intracellular electrodes in isolated muscles from muscle biopsies2,3,

Protocol

All subjects must provide written consent prior to examination, and the protocol must be approved by the appropriate local ethical review board. All methods described here were approved by the Regional Scientific Ethical Committee and Danish Data Protection Agency.

1. Preparation of the subject

  1. Assess subjects' medical histories to ensure that they do not have any previous nervous system disorders other than the disease group that will be investigated.
  2. Inform the subj.......

Representative Results

The following results were obtained in a subgroup of patients from a recent study22, in which there were fibs/psws in all sites showing profuse denervation activity. The results showed that changes in muscle fibers after denervation were assessed in vivo using the MVRC technique described in this protocol. MVRCs showed changes consistent with depolarization of the resting membrane potential in the neurogenic muscle fibers.

Fourteen patients were compared with 29 healthy.......

Discussion

MVRCs, as programmed in the recording software, is a highly automated procedure, but care is needed to obtain reliable results. In the recording stage, while adjusting the needles, it is important to avoid stimulating the end-plate zone or nerve. This usually leads to large twitches of the whole muscle, which increases the risk of displacement of the stimulation and/or recording needle during recording MVRCs. To date, the method has been applied to several muscles that have better described end-plate zone; however, the e.......

Acknowledgements

This study was financially supported mainly by the two grants from Lundbeck Foundation (Grant number R191-2015-931 and Grant number R290-2018-751). Additionally, the study was financially supported by Novo Nordisk Foundation Challenge Programme (Grant number NNF14OC0011633) as part of the International Diabetic Neuropathy Consortium.

....

Materials

NameCompanyCatalog NumberComments
50 Hz Noise EliminatorDigitimer LtdHumbug
Analogue-to-Digital ConverterNational InstrumentsNI-6221
Analysing software programDigitimer Ltd (copyright Institute of Neurology, University College, London)QtracP, MANAL9
Disposable concentric needle electrode, 25 mm x 30GNatusDantec DCN
Disposable monopolar needle electrode, 25 mm x 26GNatusTECA elite
Isolated EMG amplifierDigitimer LtdD440
Isolated linear bipolar constant-current stimulatorDigitimer LtdDS5
Software and recording protocolDigitimer Ltd (copyright Institute of Neurology, University College, London)QtracW software, M3REC3 recording protocol written by Hugh Bostock, Istitute of Neurology, London, UK)

References

  1. Tankisi, H., et al. Pathophysiology inferred from electrodiagnostic nerve tests and classification of polyneuropathies. Suggested guidelines. Clinical Neurophysiology. 116 (7), 1571-1580 (2005).
  2. Gregorio, C. C., Hudecki, M. S., Pollina, C. M., Repasky, E. A.

Explore More Articles

Muscle MembraneMuscle Velocity Recovery Cycles MVRCsNeuromuscular DisordersDiagnostic ToolBiomarkerMuscle StimulationNeedle ElectrodesMuscle FibersSkin Temperature

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved