Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Hier wird ein Protokoll zur Aufzeichnung von Muskelgeschwindigkeits-Regenerationszyklen (MVRCs) vorgestellt, eine neue Methode zur Untersuchung der Eigenschaften der Muskelmembran. MVRCs ermöglichen in vivo Bewertung der Muskelmembran Potenzial und Veränderungen in Muskel-Ionen-Kanal-Funktion in Bezug auf Pathologie, und es ermöglicht die Demonstration der Muskeldepolarisation in neurogenen Muskeln.
Obwohl konventionelle Nervenleituntersuchungen (NCS) und Elektromyographie (EMG) für die Diagnose neuromuskulärer Störungen geeignet sind, liefern sie nur begrenzte Informationen über Muskelfasermembraneigenschaften und zugrunde liegende Krankheitsmechanismen. Muskelgeschwindigkeits-Recovery-Zyklen (MVRCs) veranschaulichen, wie die Geschwindigkeit eines Muskelaktionspotentials von der Zeit nach einem vorhergehenden Aktionspotential abhängt. MVRCs stehen in engem Zusammenhang mit Veränderungen des Membranpotenzials, die einem Aktionspotenzial folgen und somit Informationen über Die Eigenschaften der Muskelfasermembran liefern. MVRCs können schnell und einfach durch direkte Stimulation und Aufnahme von Multifaserbündeln in vivo aufgezeichnet werden. MVRCs waren hilfreich beim Verständnis von Krankheitsmechanismen bei mehreren neuromuskulären Erkrankungen. Studien bei Patienten mit Channelopathien haben die unterschiedlichen Auswirkungen spezifischer Ionenkanalmutationen auf die Muskelerregbarkeit gezeigt. MVRCs wurden zuvor bei Patienten mit neurogenen Muskeln getestet. In dieser vorherigen Studie wurde die Muskel-relative Refraktionsperiode (MRRP) verlängert, und die frühe Übernormalität (ESN) und die späte Übernormalität (LSN) wurden bei Patienten im Vergleich zu gesunden Kontrollen reduziert. Dabei können MVRCs in vivo Hinweise auf eine Membrandepolarisation in intakten menschlichen Muskelfasern liefern, die ihrer verminderten Erregbarkeit zugrunde liegen. Das hier vorgestellte Protokoll beschreibt, wie Man MVRCs aufzeichnet und die Aufzeichnungen analysiert. MVRCs können als schnelle, einfache und nützliche Methode zur Aufdeckung von Krankheitsmechanismen über eine breite Palette von neuromuskulären Erkrankungen dienen.
Nervenleituntersuchungen (NCS) und Elektromyographie (EMG) sind die herkömmlichen elektrophysiologischen Methoden zur Diagnose neuromuskulärer Störungen. NCS ermöglicht den Nachweis von Axonverlust und Demyelination in den Nerven1, während EMG unterscheiden kann, ob Myopathie oder neurogene Veränderungen im Muskel aufgrund von Nervenschäden vorhanden sind. NCS oder EMG liefern jedoch begrenzte Informationen über Muskelfasermembraneigenschaften und zugrunde liegende Krankheitsmechanismen. Diese Information kann mit intrazellulären Elektroden in isolierten Muskeln aus Muskelbiopsien2,3,4erreicht werden. Es ist jedoch von klinischer Bedeutung, Methoden mit Aufzeichnungen aus intakten Muskeln bei Patienten zu verwenden.
Die Geschwindigkeit einer zweiten Muskelfaser-Aktion kann sich als Funktion der Verzögerung nach den ersten5ändern, und diese Geschwindigkeits-Recovery-Funktion (oder Erholungszyklus) hat sich in dystrophischen oder denervierten Muskeln verändert. Die Ausbeute solcher Aufnahmen aus einzelnen Muskelfasern war jedoch zu gering, um als klinisches Werkzeug von Nutzen zu sein6. Z'Graggen und Bostock fanden jedoch später heraus, dass Multifaseraufnahmen, die durch direkte Stimulation und Aufnahme aus demselben Bündel von Muskelfasern erhalten wurden, eine schnelle und einfache Methode bieten, solche Aufnahmen in vivo7zu erhalten. Bei dieser Methode wird eine Sequenz von gepaarten impulselektrischen Reizen mit unterschiedlichen Interstimulusintervallen (ISIs) verwendet7,8,9,10,11.
Die ausgewerteten MVRC-Parameter umfassen folgendes: 1) Muskelrelative Feuerfestperiode (MRRP), die die Dauer nach einem Muskelaktionspotential ist, bis das nächste Aktionspotential ausgelöst werden kann; 2) frühe Übernormalität (ESN); und 3) späte Supernormalität (LSN). ESN und LSN sind die Perioden nach der Feuerfestphase, in denen die Aktionspotentiale entlang der Muskelmembran schneller als normal durchgeführt werden. Die depolarisierende Nachpotential, und Kaliumakkumulation in den t-Tubuli des Muskels jeweils, werden als die Hauptursachen für die beiden Perioden der Supernormalität vermutet.
Die breite Anwendbarkeit von MVRCs auf Muskelerkrankungen wurde bei der Depolarisation der Membran bei Ischämie7,10,12 und Nierenversagen13sowie bei der Bereitstellung von Informationen über Muskelmembrananomalien bei kritischer Krankheit Myopathie14 und Inklusions-Körpermyositis15gezeigt. Seitdem wurden Frequenzrampen und intermittierende 15 Hz- und 20 Hz-Simulationsprotokolle eingeführt. MVRCs, zusammen mit diesen zusätzlichen Protokollen, haben die verschiedenen Auswirkungen auf die Muskelmembran Erregung im Zusammenhang mit Verlust der Funktion oder Gain-of-Funktion Mutationen in verschiedenen Muskelionenkanälen in den vererbten Muskelionen-Kanalopathien (d.h. Natriumkanalmyotonia, Paramyotonia congenita16, myotonische Dystrophie17, Andersen-Tawil-Syndrom18, und Myotonia conitgen19,20).
In einer aktuellen Studie wurde zum ersten Mal die Anwendbarkeit von MVRCs auf neurogene Muskeln gezeigt. Der Begriff "neurogener Muskel" bezieht sich auf die sekundären Veränderungen in den Skelettmuskeln, die sich als Denervation und Reinnervation nach verletzungen der vorderen Hornzellen oder motorischen Axone entwickeln. Denervation wird in EMG als spontane Aktivität charakterisiert (d.h. Fibrillation [Fibs] und positive scharfe Wellen [psws]), während große Motoreinheitenpotentiale mit längerer Dauer und erhöhter Amplitude eine Reinnervation darstellen21. EMG-Veränderungen sind in denervierten Muskeln offensichtlich, aber die zugrunde liegenden zellulären Veränderungen in Muskelfasermembran-Potenziale wurden nur in experimentellen Studien über isoliertes Muskelgewebe2,3,4gezeigt. MVRCs bieten weitere Einblicke in die Eigenschaften der menschlichen Muskelmembran in vivo in Bezug auf den Denervationsprozess.
In diesem Artikel wird die Methodik der MVRCs ausführlich beschrieben. Es fasst auch die Veränderungen der neurogenen Muskeln in einer Untergruppe von Patienten aus einer zuvor berichteten Studie22 und gesunde Kontrollpersonen, die die Bestimmung ermöglicht, ob die Methode für eine geplante Studie geeignet ist.
Die Aufnahmen werden mit einem Aufzeichnungsprotokoll ausgeführt, das Teil eines Softwareprogramms ist. Andere Geräte werden verwendet, ein isolierter linearer bipolarer Konstantstromstimulator, 50 Hz Noise Eliminator, isolierter Elektromyographie-Verstärker und analog-digitaler Wandler.
Alle Probanden müssen vor der Prüfung eine schriftliche Zustimmung erteilen, und das Protokoll muss von der zuständigen lokalen Ethik-Prüfungskommission genehmigt werden. Alle hier beschriebenen Methoden wurden vom Regionalen Wissenschaftlichen Ethikausschuss und der dänischen Datenschutzbehörde genehmigt.
1. Vorbereitung des Themas
2. Aufzeichnung der MVRCs
3. MVRC-Analysen
Die folgenden Ergebnisse wurden in einer Untergruppe von Patienten aus einer aktuellen Studie22erhalten, in der es Fibs/psws an allen Standorten gab, die eine üppige Denervationsaktivität zeigten. Die Ergebnisse zeigten, dass Veränderungen der Muskelfasern nach Derervation in vivo mit der in diesem Protokoll beschriebenen MVRC-Technik bewertet wurden. MVRCs zeigten Veränderungen, die mit der Depolarisation des ruhenden Membranpotentials in den neurogenen Muskelfasern im Einklang stehen.
MVRCs, wie in der Aufzeichnungssoftware programmiert, ist ein hochautomatisiertes Verfahren, aber vorsichtsbedürftig, um zuverlässige Ergebnisse zu erzielen. In der Aufnahmephase ist es bei der Einstellung der Nadeln wichtig, die Endplattenzone oder den Nerv nicht zu stimulieren. Dies führt in der Regel zu großen Zuckungen des gesamten Muskels, was das Risiko einer Verschiebung der Stimulations- und/oder Aufnahmenadel während der Aufnahme von MVRCs erhöht. Bis heute wurde die Methode auf mehrere Muskeln angewendet,...
H.B. erhält Lizenzgebühren von UCL für den Verkauf seiner Qtrac-Software, die in dieser Studie verwendet wird. Die anderen Autoren haben keine potenziellen Interessenkonflikte. Alle Autoren haben dem endgültigen Artikel zugestimmt.
Diese Studie wurde vor allem durch die beiden Stipendien der Lundbeck Foundation (Grant-Nummer R191-2015-931 und Grant-Nummer R290-2018-751) finanziell unterstützt. Darüber hinaus wurde die Studie vom Novo Nordisk Foundation Challenge Programme (Grant-Nummer NNF14OC0011633) als Teil des International Diabetic Neuropathy Consortium finanziell unterstützt.
Name | Company | Catalog Number | Comments |
50 Hz Noise Eliminator | Digitimer Ltd | Humbug | |
Analogue-to-Digital Converter | National Instruments | NI-6221 | |
Analysing software program | Digitimer Ltd (copyright Institute of Neurology, University College, London) | QtracP, MANAL9 | |
Disposable concentric needle electrode, 25 mm x 30G | Natus | Dantec DCN | |
Disposable monopolar needle electrode, 25 mm x 26G | Natus | TECA elite | |
Isolated EMG amplifier | Digitimer Ltd | D440 | |
Isolated linear bipolar constant-current stimulator | Digitimer Ltd | DS5 | |
Software and recording protocol | Digitimer Ltd (copyright Institute of Neurology, University College, London) | QtracW software, M3REC3 recording protocol written by Hugh Bostock, Istitute of Neurology, London, UK) |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten