A subscription to JoVE is required to view this content. Sign in or start your free trial.
The goal of this protocol is to analyze cell division in intact tissue by live and fixed cell microscopy using Drosophila meiotic spermatocytes. The protocol demonstrates how to isolate whole, intact testes from Drosophila larvae and early pupae, and how to process and mount them for microscopy.
Experimental analysis of cells dividing in living, intact tissues and organs is essential to our understanding of how cell division integrates with development, tissue homeostasis, and disease processes. Drosophila spermatocytes undergoing meiosis are ideal for this analysis because (1) whole Drosophila testes containing spermatocytes are relatively easy to prepare for microscopy, (2) the spermatocytes’ large size makes them well suited for high resolution imaging, and (3) powerful Drosophila genetic tools can be integrated with in vivo analysis. Here, we present a readily accessible protocol for the preparation of whole testes from Drosophila third instar larvae and early pupae. We describe how to identify meiotic spermatocytes in prepared whole testes and how to image them live by time-lapse microscopy. Protocols for fixation and immunostaining whole testes are also provided. The use of larval testes has several advantages over available protocols that use adult testes for spermatocyte analysis. Most importantly, larval testes are smaller and less crowded with cells than adult testes, and this greatly facilitates high resolution imaging of spermatocytes. To demonstrate these advantages and the applications of the protocols, we present results showing the redistribution of the endoplasmic reticulum with respect to spindle microtubules during cell division in a single spermatocyte imaged by time-lapse confocal microscopy. The protocols can be combined with expression of any number of fluorescently tagged proteins or organelle markers, as well as gene mutations and other genetic tools, making this approach especially powerful for analysis of cell division mechanisms in the physiological context of whole tissues and organs.
Cell division is often studied using cell lines grown in culture1. While we have gained a wealth of invaluable insight and understanding of fundamental mechanisms from these studies2, cells grown in culture cannot fully recapitulate the physiology of cell division as it occurs in intact, living tissue. For example, in intact tissues and organs, cells must divide at the right place and at the right time so that progeny cells are properly situated within the tissue, so that they can undergo appropriate differentiation or functional programs, and so that cell proliferation is properly coordinated with tissue growth or homeo....
1. Prepare Animals, Tools, and Media for Dissection
When this protocol is successfully executed, testes will remain fully intact for imaging by confocal microscopy or other fluorescence microscopy methods. As seen in Figure 3A, the cellular organization of the testes is preserved, and the progression of cell differentiation from one end of the testis to the other including spermatogonia, spermatocytes, and haploid spermatids is visible. GFP-tubulin is a useful marker for identifying dividing spermatocytes and for live imaging of the progressi.......
We have described a protocol for the preparation of larval or early pupal Drosophila testes, optimized for long-term, live imaging of spermatocyte cell division. This is a powerful method for analysis of cell division in the physiological context of intact tissue. The power of this method is further expanded when combined with Drosophila genetic tools, such as specific gene mutations, tissue-specific RNAi-mediated suppression, and fluorescently labeled protein and organelle markers. In addition, the sma.......
This work was supported by Department of Defense start-up funds to J.T.S.
....Name | Company | Catalog Number | Comments |
5" Dissecting Probe | Fisher | 08-965-A | |
5.75" Glass Pasteur Pipet | Fisher | 13-678-20A | |
Bovine Serum Albumin (BSA) | Fisher | BP9703-100 | |
Dumont #5 Forceps | Fine Science Tools | 11252-20 | Straight forcepts with fine tips |
Frosted Microscope Slides | Fisher | 12-544-2 | Slides for mounting fixed tissue, with frosted writing surface |
Halocarbon oil 700 | Sigma | H8898-100 mL | |
Lumox Dish 50 | Sarstedt | SAR946077410 | Gas-permeable tissue culture dish |
Microscope Cover Glass | Fisher | 12-541-B | 22x22 mm, #1.5 glass coverslip |
Minutien Pins | Fine Science Tools | 26002-15 | Insect pins used to make scalpel tool |
Nickel Plated Pin Holder | Fine Science Tools | 26018-17 | |
Paraformaldehyde 32% Solution, EM Grade | Electron Microsocopy Sciences | 15714 | |
Plan Beveled Edge Microscope Slides | Fisher | 12-549-5 | Slides used for dissections |
PYREX Spot Plates | Fisher | 13-748B | 9-well glass dissecting dish |
Schneider's Drosophila medium | Fisher | 21720-024 | |
Syringe Filter, 0.22 µm | EMD Millipore | SLGS033SB | |
Triton X-100 | Fisher | BP151-500 | |
Vectashield | Vector Labs | H-1000 | Microscopy mounting medium |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved