A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe an intracisternal injection that employs a needle bent at the tip that can be stabilized to the skull, thus eliminating the risk of damage to the underlying parenchyma. The approach can be used for genetic fate mapping and manipulations of leptomeningeal cells and for tracking cerebrospinal fluid movement.
The protocol outlined here describes how to safely and manually inject solutions through the cisterna magna while eliminating the risk of damage to the underlying parenchyma. Previously published protocols recommend using straight needles that should be lowered to a maximum of 1-2 mm from the dural surface. The sudden drop in resistance once the dural membrane has been punctured makes it difficult to maintain the needle in a steady position. Our method, instead, employs a needle bent at the tip that can be stabilized against the occipital bone of the skull, thus preventing the syringe from penetrating into the tissue after perforation of the dural membrane. The procedure is straightforward, reproducible, and does not cause long-lasting discomfort in the operated animals. We describe the intracisternal injection strategy in the context of genetic fate mapping of vascular leptomeningeal cells. The same technique can, furthermore, be utilized to address a wide range of research questions, such as probing the role of leptomeninges in neurodevelopment and the spreading of bacterial meningitis, through genetic ablation of genes putatively implicated in these phenomena. Additionally, the procedure can be combined with an automatized infusion system for a constant delivery and used for tracking cerebrospinal fluid movement via injection of fluorescently labelled molecules.
Leptomeningeal cells are a fibroblast-like population of cells organized in a thin layer overlaying the brain and expressing genes implicated in collagen crosslinking (e.g., Dcn and Lum), and in the establishment of a brain-meningeal barrier (e.g., Cldn11)1,2. Leptomeningeal cells are implicated in a wide range of physiological functions, from strict control over the cerebrospinal fluid drainage3 to guidance of neural progenitors in the developing brain4,5. A recent study has also proposed that leptomeninges in the newborn may harbor radial glia-like cells that migrate into the brain parenchyma and develop into functional cortical neurons6.
Leptomeningeal cells are located in close proximity to surface astrocytes and share with them, as well as other parenchymal astroglia, expression of connexin-30 (Cx30)7. The surgical procedure outlined below allows widespread and specific labelling of these meningeal cells via a one-time delivery of endoxifen into the cisterna magna of transgenic mice conditionally expressing tdTomato in Cx30+ cells (i.e., using a CreER-loxP system for fate mapping). Endoxifen is an active metabolite of Tamoxifen and induces recombination of CreER-expressing cells in the same way as Tamoxifen does. It is, however, the recommended solution for topical application because it dissolves in 5-10% DMSO, instead of high concentrations of ethanol. Additionally, endoxifen does not cross the brain-meningeal barrier, thereby enabling specific recombination of leptomeningeal cells, without labelling of the underlying Cx30+ astroglial population (see Representative Results).
The technique presented here aims at manually and safely injecting the compound in the cerebrospinal fluid, via direct access to the cisterna magna. Unlike other, more invasive procedures requiring craniotomy, this approach allows to infuse compounds without causing damage to the skull or the brain parenchyma. Thus, it is not associated with the induction of inflammatory reactions triggered by activation of parenchymal glia cells. Similar to other injection strategies described before8,9,10, the present approach relies on the surgical exposure of the atlanto-occipital dural membrane covering the cisterna magna, after blunt dissection of the overlaying neck muscles. However, unlike for other procedures, we recommend the use of a needle bent at the tip, which can be stabilized against the occipital bone during administration. This will prevent the risk of the needle penetrating too deep and damaging the underlying cerebellum and medulla.
This surgical procedure is compatible with lineage tracing investigations that aim at mapping changes in cell identities and migration routes through parenchymal layers. It can also be adapted to genetic ablation studies that intend to probe the role of leptomeningeal cells in health and disease, such as their contribution to cortical development5 or the spreading of bacterial meningitis3,11. Finally, it can be utilized to track cerebrospinal fluid movement when combined with delivery of fluorescent tracers in wildtype animals.
The surgical procedures hereby presented were approved by Stockholms Norra Djurförsöksetiska Nämnd and carried out in agreement with specifications provided by the research institute (Karolinska Institute, Sweden).
NOTE: Intracisternal injection can be flexibly adapted for multiple research purposes. We present below a procedure developed to efficiently label leptomeningeal cells for fate mapping based on injection of endoxifen in a transgenic mouse line carrying R26R-tdTomato12 and CreER, the latter under the Cx30 promoter13. Labelling of this population of cells may be achieved through injection of viral constructs using the same procedure outlined below. Finally, this approach can be employed for tracking cerebrospinal fluid flow, by infusion of fluorescent tracers.
1. Preparation of the Injection System
NOTE: We recommend carrying out the procedure in a suitable surgical room, and in aseptic conditions. Surgical tools can be sterilized using heat (autoclave, glass bead sterilizer) or sanitized using a high-level chemical disinfectant if they are heat-sensitive. Rinse the instruments before use when employing chemical disinfection or allow them to cool down when sanitized with heat.
2. Induction of Anesthesia
3. Positioning of the Animal for the Procedure
4. Exposure of the Cisterna Magna
5. Intracisternal Injection
6. Concluding the Procedure and Post-operative Care
Intracisternal injection of endoxifen in transgenic mice expressing CreER under the Cx30 promoter13 and an inducible fluorescent reporter allows for specific recombination of leptomeningeal cells without labelling the neighboring Cx30-expressing surface and parenchymal astrocytes in the cortex (Figure 1). In order to gain access to the cisterna magna, the anesthetized animal is positioned with its body and its head at an angle of appro...
The protocol outlined here presents a straightforward and reproducible procedure to label leptomeningeal cells for fate mapping. We use intracisternal injection of endoxifen, an active metabolite of Tamoxifen, to induce expression of tdTomato fluorescent reporter in Cx30-CreER; R26R-tdTomato mice12,13.
Compared to other protocols used for gaining access to the cerebrospinal fluid through the cisterna magna9, our...
The authors declare no competing interests.
This study was supported by grants from the Swedish Research Council, the Swedish Cancer Society, the Swedish Foundation for Strategic Research, Knut och Alice Wallenbergs Stiftelse and the Strategic Research Programme in Stem Cells and Regenerative Medicine at Karolinska Institutet (StratRegen).
Name | Company | Catalog Number | Comments |
Anesthesia unit | Univentor 410 | 8323102 | Complete of vaporizer, chamber, and tubing that connects to chamber and mouse head holder |
Anesthesia (Isoflurane) | Baxter Medical AB | 000890 | |
Betadine | Sigma-Aldrich | PVP1 | |
Carprofen | Orion Pharma AB | 014920 | Commercial name Rymadil |
Cyanoacrylate glue | Carl Roth | 0258.1 | Use silk 5-0 sutures, in alternative |
Medbond Tissue Glue | Stoelting | 50479 | |
DMSO | Sigma-Aldrich | D2650 | |
Endoxifen | Sigma-Aldrich | E8284 | |
Ethanol 70% | Histolab | 01370 | |
Hamilton syringe (30 G beveled needle) | Hamilton | 80300 | |
Lidocaine | Aspen Nordic | 520455 | |
Mouse head holder | Narishige International | SGM-4 | With mouth piece for inhalational anhestetics. Alternatively, use a stereotactic frame |
Scissors | Fine Science Tools | 15009-08 | |
Shaver | Aesculap | GT420 | |
Sterile absorption spears | Fine Science Tools | 18105-01 | Sterile cotton swabs are also a good option |
Surgical separator | World Precision Instrument | 501897 | |
Tweezers | Dumont | 11251-35 | |
Viscotears | Bausch&Lomb Nordic AB | 541760 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved