JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Chemistry

Probing Surface Electrochemical Activity of Nanomaterials using a Hybrid Atomic Force Microscope-Scanning Electrochemical Microscope (AFM-SECM)

Published: February 10th, 2021

DOI:

10.3791/61111

1Department of Civil and Environmental Engineering, New Jersey Institute of Technology

Abstract

Scanning electrochemical microscopy (SECM) is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Atomic force microscopy (AFM) is a versatile tool to characterize micro- and nanostructure in terms of topography and mechanical properties. However, conventional SECM or AFM provides limited laterally resolved information on electrical or electrochemical properties at nanoscale. For instance, the activity of a nanomaterial surface at crystal facet levels is difficult to resolve by conventional electrochemistry methods. This paper reports the application of a combination of AFM and SECM, namely, AFM-SECM, to probe nanoscale surface electrochemical activity while acquiring high-resolution topographical data. Such measurements are critical to understanding the relationship between nanostructure and reaction activity, which is relevant to a wide range of applications in material science, life science and chemical processes. The versatility of the combined AFM-SECM is demonstrated by mapping topographical and electrochemical properties of faceted nanoparticles (NPs) and nanobubbles (NBs), respectively. Compared to previously reported SECM imaging of nanostructures, this AFM-SECM enables quantitative assessment of local surface activity or reactivity with higher resolution of surface mapping.

Explore More Videos

Keywords Nanomaterials

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved