A subscription to JoVE is required to view this content. Sign in or start your free trial.
Atomic force microscopy (AFM) combined with scanning electrochemical microscopy (SECM), namely, AFM-SECM, can be used to simultaneously acquire high-resolution topographical and electrochemical information on material surfaces at nanoscale. Such information is critical to understanding heterogeneous properties (e.g., reactivity, defects, and reaction sites) on local surfaces of nanomaterials, electrodes and biomaterials.
Scanning electrochemical microscopy (SECM) is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Atomic force microscopy (AFM) is a versatile tool to characterize micro- and nanostructure in terms of topography and mechanical properties. However, conventional SECM or AFM provides limited laterally resolved information on electrical or electrochemical properties at nanoscale. For instance, the activity of a nanomaterial surface at crystal facet levels is difficult to resolve by conventional electrochemistry methods. This paper reports the application of a combination of AFM and SECM, namely, AFM-SECM, to probe nanoscale surface electrochemical activity while acquiring high-resolution topographical data. Such measurements are critical to understanding the relationship between nanostructure and reaction activity, which is relevant to a wide range of applications in material science, life science and chemical processes. The versatility of the combined AFM-SECM is demonstrated by mapping topographical and electrochemical properties of faceted nanoparticles (NPs) and nanobubbles (NBs), respectively. Compared to previously reported SECM imaging of nanostructures, this AFM-SECM enables quantitative assessment of local surface activity or reactivity with higher resolution of surface mapping.
Characterization of electrochemical (EC) behavior can provide critical insights into the kinetics and mechanisms of interfacial reactions in diverse fields, such as biology1,2, energy3,4, material synthesis5,6,7, and chemical process8,9. Traditional EC measurements including electrochemical impedance spectroscopy10, electrochemical noise methods11, galvan....
1. Sample preparation
Topography and current imaging of ONBs by AFM-SECM
Previous studies that characterized NBs with AFM only reported topography images to reveal the size and distribution of NBs immobilized on a solid substrate56,57. The experiments here revealed both morphological and electrochemical information. Individual oxygen nanobubbles (ONBs) can be clearly identified in Figure 9, which provides.......
A combined AFM-SECM technique that enables high-resolution multimodal imaging has been described in this protocol. This technique allows for topography to be mapped simultaneously with the SECM current collected or mapped on single nanoparticles or nanobubbles. Experiments were performed using commercial probes. These probes were designed to provide chemical compatibility with a wide range of electrochemical environments, electrochemical performance, mechanical stability, and multiple-cycle handling18
This work is funded by the national science foundation (Award Number: 1756444) via Biological & Environmental Interfaces of Nano Materials, the USDA National Institute of Food and Agriculture, AFRI project [2018-07549] and Assistance Agreement No. 83945101-0 awarded by the U.S. Environmental Protection Agency to New Jersey Institute of Technology. It has not been formally reviewed by EPA. The views expressed in this document are solely those of authors and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. The authors also thank Undergraduate Research and Innovation program (URI) ....
Name | Company | Catalog Number | Comments |
Equipment | |||
Atomic force microsopy | Bruker, CA | Dimenison Icon | |
Bipotentiostat | CH Instruments, Inc. | CHI 700E | |
Materials | |||
Silicon wafer | TED PELLA, Inc. | 16013 | |
Fresh gold plates | Bruker, CA | model 119-017-307 | |
PF-SECM-AFM probes | Bruker, CA | 990-050138 | |
PF-SECM strain-release module | Bruker, CA | 840-012-724 | |
PF-SECM Probe Holder | Bruker, CA | 900-050121 | |
PF-SECM Chuck | Bruker, CA | PF-SECM Chuck | |
PF-SECM O-ring | Bruker, CA | 598-000-106 | |
PF-SECM cover glass, SECM Cell | Bruker, CA | 900-050137 | |
EC Cell Assy | Bruker, CA | 932-017-300 | |
ESD Field Service | Bruker, CA | 490-000-066 | |
PF-SECM Boot | Bruker, CA | 900-050136 | |
Spring connector block | Bruker, CA | 900-050524 | |
PFSECM Tweezers | Bruker, CA | ||
Cable, SECM Tip module | Bruker, CA | 468-050171 | |
Ag wire | Bruker, CA | 249-000-056 | |
Pt wire | Bruker, CA | 248-000-004 | |
Hard sharp wire | Bruker, CA | TT-ECM10 | |
Tubular ceramic membrane | Refracton | WFA0.1 | |
Chemicals | |||
Copper(II) chloride dihydrate | ACROS Organics | AC315281000 | |
Sodium Hydroxide | Fisher Chemical | S318-100 | |
Ascorbic Acid | Fisher Chemical | A61-25 | |
Epoxy | Loctite | Instant Mix | |
Potassium Chloride | Fisher Chemical | P217-500 | |
Hexaammineruthenium(III) chloride | ACROS Organics | AC363342500 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved