Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a nonradioactive assay to measure kinase activity of polynucleotide kinases (PNKs) on small DNA and RNA substrates.

Abstract

Polynucleotide kinases (PNKs) are enzymes that catalyze the phosphorylation of the 5' hydroxyl end of DNA and RNA oligonucleotides. The activity of PNKs can be quantified using direct or indirect approaches. Presented here is a direct, in vitro approach to measure PNK activity that relies on a fluorescently-labeled oligonucleotide substrate and polyacrylamide gel electrophoresis. This approach provides resolution of the phosphorylated products while avoiding the use of radiolabeled substrates. The protocol details how to set up the phosphorylation reaction, prepare and run large polyacrylamide gels, and quantify the reaction products. The most technically challenging part of this assay is pouring and running the large polyacrylamide gels; thus, important details to overcome common difficulties are provided. This protocol was optimized for Grc3, a PNK that assembles into an obligate pre-ribosomal RNA processing complex with its binding partner, the Las1 nuclease. However, this protocol can be adapted to measure the activity of other PNK enzymes. Moreover, this assay can also be modified to determine the effects of different components of the reaction, such as the nucleoside triphosphate, metal ions, and oligonucleotides.

Introduction

Polynucleotide kinases (PNK) play critical roles in many DNA and RNA processing pathways, such as DNA repair and ribosome assembly1,2,3,4,5. These fundamental enzymes catalyze the transfer of the terminal (gamma) monophosphate from a nucleoside triphosphate (NTP, most often ATP) to the 5' hydroxyl end of a nucleotide substrate. One of the most well characterized PNKs is bacteriophage T4 PNK, which has broad substrate specificity and is heavily utilized by molecular biology labs for incorporating radioac....

Protocol

1. Preparation

  1. Prepare buffer and reagents.
    1. Make 1x Reaction Buffer by combining 20 µL of 1 M Tris (pH = 8.0), 40 µL of 5 M sodium chloride, 2.5 µL of 2 M magnesium chloride, 100 µL of 50% (v/v) glycerol, and RNase-free water to reach a total volume of 1 mL.
    2. Make urea loading dye by combining 4.8 g of urea, 200 µL of 1 M Tris (pH = 8.0), 20 µL of 0.5 M EDTA (pH = 8.0), 0.5 mL of 1% (w/v) bromophenol blue, and RNase-free water to reach a total volume of 10 m.......

Representative Results

A successful representative denaturing gel of a titration of ATP with a fixed amount of Las1-Grc3 complex is shown in Figure 1. Addition of enzyme resulted in Las1-mediated RNA cleavage of the SC-ITS2 RNA substrate, leading to a defined RNA fragment (5-OH C2 RNA). Upon the addition of ATP, the C2 RNA fragment was phosphorylated by Grc3 PNK (5-P C2 RNA). In denaturing gels the phosphorylated RNA migrates faster than its unphosphorylated counterpart. As shown i.......

Discussion

Described is an assay to measure kinase activity of Grc3 PNK on fluorescently-labeled nucleotide substrates. This protocol can be applied to characterize other PNK enzymes by adapting the Reaction Buffer and oligonucleotide substrate. For instance, the protocol calls for a trace amount of EDTA. The addition of EDTA is beneficial for two reasons: First, this approach favors magnesium-bound Grc3 by preventing the enzyme from binding to trace amounts of contaminating metals in the mixture. Second, a small amount of EDTA inh.......

Acknowledgements

We thank Dr. Andrew Sikkema and Andrea Kaminski for their critical reading of this manuscript. This work was supported by the US National Institute of Health Intramural Research Program; US National Institute of Environmental Health Sciences (NIEHS; ZIA ES103247 to R.E.S) and the Canadian Institutes of Health Research (CIHR; 146626 to M.C.P).

....

Materials

NameCompanyCatalog NumberComments
0.4 mm 34-well combBioRad1653848
0.4 mm spacerBioRad1653812
0.5 M EDTA ph 8.0KD MedicalRGF-3130
1M Magnesium ChlorideKD MedicalCAC-5290
1M Tris pH 8.0KD MedicalRGF-3360
40% Acrylamide/Bis Solution 29:1BioRad1610146
5M Sodium ChlorideKD MedicalRGF-3720
ammonium persulfate (APS)BioRad161-0700
ATPSigmaA2383-1G
boric acidSigmaB0394
bromophenol blue sodium saltSigmaB5525-5G
Glass PlatesThomas Scientific1188K51
Hoefer SQ3 SequencerHoeferN/A
Image J SoftwareN/AN/Ahttps://imagej.nih.gov/ij/
Labeled RNA oligonucleotidesIDTCustom Order
Pharmacia EPS 3500 Power SupplyPharmaciaN/A
Steriflip 0. 22 um FilterMillipore5FCP00525
TEMEDBioRad161-0800
tris baseSigmaTRIS-RO
Typhoon FLA 9500 gel imagerGE HealthcareN/A
Ultra Pure DEPC WaterInvitrogen750023
Ultra Pure GlycerolInvitrogen19E1056865
ureaFisher ChemicalU15-500

References

  1. Pillon, M. C., Stanley, R. E. Nuclease integrated kinase super assemblies (NiKs) and their role in RNA processing. Current Genetics. 64 (1), 183-190 (2018).
  2. Pillon, M. C., Sobhany, M., Borgnia, M. J., Williams, J. G., Stanley, R. E.

Explore More Articles

Polynucleotide KinasePhosphorylationDNARNASubstrateNonradioactive AssayAcrylamide GelDenaturing GelUreaTBE BufferRNA Enzyme Kinase ReactionsATP SubstrateQuenchingDownstream Analysis

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved