Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The article describes quantification of 1) the size and number of focal adhesions and 2) cell shape index and its distribution from confocal images of the confluent monolayers of MCF7 cells.

Abstract

The methods presented here quantify some parameters of confluent adherent cell monolayers from multiple appropriately stained confocal images: adhesion to the substrate as a function of the number and size of focal adhesions, and cell shape, characterized by the cell shape index and other shape descriptors. Focal adhesions were visualized by paxillin staining and cell-cell borders were marked by junction plakoglobin and actin. The methods for cell culture and staining were standard; images represent single focal planes; image analysis was performed using publicly available image processing software. The presented protocols are used to quantify the number and size of focal adhesions and the differences in cell shape distribution in the monolayers, but they can be repurposed for the quantification of the size and shape of any other distinct cellular structure that can be stained (e.g., mitochondria or nuclei). Assessing these parameters is important in the characterization of the dynamic forces in adherent cell layer, including cell adhesion and actomyosin contractility that affects cell shape.

Introduction

Epithelial cell monolayers act as a collective in which cell-cell and cell-substrate adhesion as well as contractile forces and tensions represent important parameters and their proper balance contributes to the overall integrity of the unit1,2,3. Thus, assessing these parameters represents a way to establish the current status of the cell layer.

The two methods described here represent a two-dimensional analysis of the confluent monolayers of adherent, epithelial cells (in this case MCF7 breast cancer cell line). The analysis is performed using co....

Protocol

1. Preparatory steps

  1. Cell seeding to obtain confluent monolayers
    1. Before seeding, coat the wells of a 4-wells chamber slide with collagen I (or other ECM component of choice). For collagen I coating, follow a commercial protocol: https://www.sigmaaldrich.com/technical-documents/articles/biofiles/collagen-product-protocols.html at a concentration of 8 μg/cm2.
    2. Seed 400,000 cells to one well of a 4-well chamber slide.
    3. Culture the cells for 24 h (or longer, dependi.......

Representative Results

Focal adhesion analysis
The knockdown of HAX1 gene was previously shown to affect focal adhesions6. Cells were cultured on collagen I-coated surface for 48 h. Images of the MCF7 control cells and MCF7 cells with a HAX1 knockdown (HAX1 KD) from three independent experiments stained with focal adhesion protein paxillin were obtained using a confocal microscope (image from single focal plane/Z-slice from basal region). FAs from about 2,000-2,500 cells.......

Discussion

Cell-cell and cell-substrate adhesion constitute inherent attributes of the epithelial cells and play the critical role in tissue morphogenesis and embriogenesis. In adult tissues the proper regulation of mechanical properties of the cell layer is crucial in maintaining homeostasis and preventing pathological responses like tumor progression and metastasis. The size and number of focal adhesions depend on the strength of cell-substrate adhesion, while cell shape depends on contractile forces and is related to the status .......

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Polish National Science Center under grant no. 2014/14/M/NZ1/00437.

....

Materials

NameCompanyCatalog NumberComments
Alexa Fluor 594ThermoFisher ScientificA32740goat anti-rabbit, 1:500
Ammonium chlorideSigmaA9434
BSABioShopALB001.500
Collagen from calf skinSigmaC9791-10MG
DAPISigmaD95421:10000 (stock 1 mg/mL in H2O), nucleic acid staining
DMEM + GlutaMAX, 1 g/L D-Glucose, PyruvateThermoFisher Scientific21885-025
FBSThermoFisher Scientific10270-136
Junction plakoglobinCell Signaling2309Srabbit, 1:400
Laminar-flow cabinet class 2Alpinastandard equipment
MCF7-basedHAX1KD cell lineCell line established in the National Institute of Oncology, Warsaw, described in Balcerak et al., 2019MCF7 cell line withHAX1knockdown
MCF7 cell line (CONTROL)ATCCATCC HTB-22epithelial, adherent breast cancer cell line
Olympus CK2 light microscopeOlympus
PaxillinAbcamab32084rabbit, 1:250, Y113
PBSThermoFisher Scientific10010023
Phalloidin-TRITC conjugateSigmaP19511:400 (stock 5 mg/mL in DMSO), actin labeling
PTXSigmaT7402-1MG
TBST – NaClSigmaS9888
TBST – Trizma baseSigmaT1503
Triton X-100Sigma9002-93-11
Zeiss LSM800 Confocal microscopeZeiss

References

  1. Li, D. S., Zimmermann, J., Levine, H. Modeling closure of circular wounds through coordinated collective motion. Search Results. 13 (1), 016006 (2016).
  2. Ilina, O., Friedl, P. Mechanisms of collective cell migration at a glance.<....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cell substrate AdhesionCell ShapeMCF7 Cell MonolayersQuantificationConfocal MicroscopyImageJFocal Adhesion AnalysisBackground SubtractionBinary ConversionParticle AnalysisImageJ Macro

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved