A subscription to JoVE is required to view this content. Sign in or start your free trial.
microRNAs are involved in the pathogenesis of IgA nephropathy. We have developed a reliable method for detecting microRNA expression levels in the kidneys of an IgA nephropathy mouse model (HIGA mice). This new method will facilitate to check for miRNAs involvement in IgA nephropathy.
Immunoglobulin A (IgA) nephropathy is a type of primary glomerulonephritis characterized by the abnormal deposition of IgA, leading to the end-stage renal failure. In recent years, the involvement of microRNAs (miRNAs) has been reported in the pathogenesis of IgA nephropathy. However, there is no established method for profiling miRNAs in IgA nephropathy using small animal models. Therefore, we developed a reliable method for analyzing miRNA in the kidney of an IgA mouse model (HIGA mouse). The goal of this protocol is to detect the altered expression levels of miRNAs in the kidneys of HIGA mice when compared with the levels in kidneys of control mice. In brief, this method consists of four steps: 1) obtaining kidney samples from HIGA mice; 2) purifying total RNA from kidney samples; 3) synthesizing complementary DNA from total RNA; and 4) quantitative reverse transcription polymerase chain reaction (qRT-PCR) of miRNAs. Using this method, we successfully detected the expression levels of several miRNAs (miR-155-5p, miR-146a-5p, and miR-21-5p) in the kidneys of HIGA mice. This new method can be applied to other studies profiling miRNAs in IgA nephropathy.
Immunoglobulin A (IgA) nephropathy is a type of primary glomerulonephritis characterized by the abnormal deposition of IgA in the renal glomerular mesangial region1,2. It is the most common of the primary glomerulonephritis and leads to the end-stage renal failure in 20%–40% of patients2. The cause is still unknown but persistent mucosal infection has been implicated1,3. Corticosteroids, immunosuppressants, and renin−angiotensin system inhibitors have been proposed as therapeutic methods1,3, but have not been completely established3. Therefore, further research is required to clarify the etiology and therapeutic methods of treating IgA nephropathy.
microRNAs (miRNAs) are small, non-coding RNAs that play an important role in regulating gene expression4,5. miRNAs are reported to be involved in the pathogenesis of various diseases, and some have been identified as disease biomarkers and therapeutic agents4,5. In recent years, an association between miRNAs and the pathogenesis of IgA nephropathy has also been reported2,6,7. For example, miR-148b was shown to be involved in structural abnormalities of IgA in patients with IgA nephropathy2,6,7, while miR-148b and let-7b were documented as novel biomarkers for detecting IgA nephropathy7. Although understanding the effects of miRNAs on IgA nephropathy may help further elucidate etiology and treatment2, standard methods for profiling miRNAs in IgA nephropathy using small animal models have not yet been established2.
We herein developed a simple and reliable method for measuring miRNA expression levels in the kidneys of an IgA nephropathy mouse model (HIGA mice). The HIGA mouse is a characteristic ddY strain showing a particularly high level of serum IgA and the abnormal deposition of IgA in kidney glomeruli8,9,10,11. Therefore, HIGA mice can be used as an IgA nephropathy mouse model8,9,10,11. Our method consists of four major steps: first, surgically obtaining kidney samples from HIGA mice; second, homogenizing samples and purifying total RNA using a silica membrane-based spin column; third, synthesizing complementary DNA (cDNA) from total RNA using reverse transcription; and fourth, detecting the expression levels of miRNA by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The rationale for this method and the reliability of the results are based on previous reports12,13. We show that this is a useful technique to accurately measure miRNA expression levels in an IgA nephropathy mouse model, and that it could be used to facilitate future research into miRNAs in IgA nephropathy.
Animal experiments were approved by the Animal Ethics Committee of Jichi Medical University and comply with the Use and Care of Experimental Animals guidelines from the Jichi Medical University Guide for Laboratory Animals.
1. Obtaining kidney samples from HIGA mice
NOTE: HIGA mice show a stable phenotype of IgA nephropathy after 25 weeks of age8,9,10,11. Balb/c mice should be selected as the control group8,9,10,11. 25-week-old female HIGA mice (n = 10) and 25-week-old female Balb/c mice (n = 10) were obtained. It is necessary to determine the number of mice required for experiments in advance. This step requires about 7–8 h for a sample size of 10 HIGA mice and 10 Balb/c mice.
2. Purifying total RNA from kidney samples
NOTE: In this step, commercially available miRNA isolation kit is used for the extraction of total RNA. In addition, biopolymer-shredding spin column is used. See Table of Materials for additional details. miRNA isolation kit contains a silica membrane-based spin column, phenol/guanidine-based lysis reagents, guanidine/ethanol wash buffer (wash buffer 1), ethanol wash buffer (wash buffer 2), and nuclease-free water. This step requires about 3 h for a sample size of 10 HIGA mice and 10 control mice.
3. Synthesis of cDNA from total RNA
NOTE: In this step, a commercially available reverse transcription kit is used. See Table of Materials for additional details. This kit contains nucleic acid mix, reverse transcriptase mix, and buffer. This procedure must be performed on ice to prevent progress of the reaction. This step requires about 3 h for a sample size of 10 HIGA mice and 10 control mice.
4. qRT-PCR of miRNA
NOTE: In this step, a commercially available PCR kit is used. See Table of Materials for additional details. This kit contains PCR mix, universal primer, and nuclease-free water. Samples should be prepared in duplicate, and the accuracy of the results should be considered in each case. Expression levels of miRNA are quantified by the ΔΔCT method. This step requires about 4 h for a sample size of 10 HIGA mice and 10 control mice.
We investigated the expression levels of miRNAs in the kidneys of HIGA mice (n=10). This result was obtained completely based on the described protocol. The kidneys of Balb/c mice were selected as the control (n=10). In both groups, aged 25 weeks were selected. Only female HIGA mice were available from the supplier. The expression levels of three miRNAs (miR-155-5p, miR-146a-5p, and miR-21-5p; Figure 1) were detected, which were previously reported to be associated with IgA nephropathy
We were able to measure the expression levels of miRNAs in the kidneys of an IgA nephropathy mouse model (HIGA mice) using this new method. IgA nephropathy is an unexplained disease that needs further research to clarify its etiology and therapeutic targets1,3. However, obtaining human kidney samples is highly invasive. This new technique is advantageous in that it allows the study of IgA nephropathy using small animals and should facilitate future research into ...
The authors declare that they have no conflicts of interest.
We thank Sarah Williams, PhD, from Edanz Group (www.edanzediting.com) for editing a draft of this manuscript.
Name | Company | Catalog Number | Comments |
BALB/cCrSlc (25-week-old, female) | Japan SLC, Inc. | none | Mouse for control |
HIGA/NscSlc (25-week-old, female) | Japan SLC, Inc. | none | IgA nephropathy mouse model |
MicroAmp Optical 96 well reaction plate for qRT-PCR | Thermo Fisher Scientific | 4316813 | 96-well reaction plate |
MicroAmp Optical Adhesive Film | Thermo Fisher Scientific | 4311971 | adhesive film for 96-well reaction plate |
miScript II RT kit | Qiagen | 218161 | Experimental kit for synthesis of cDNA |
miRNeasy Mini kit | Qiagen | 217004 | Experimental kit fot extraction of total RNA |
miScript Primer Assay (RNU6-2) | Qiagen | MS00033740 | miRNA-specific primer |
miScript Primer Assay (miR-155-5p) | Qiagen | MS00001701 | miRNA-specific primer |
miScript Primer Assay (miR-146a-5p) | Qiagen | MS00001638 | miRNA-specific primer |
miScript Primer Assay (miR-21-5p) | Qiagen | MS00009079 | miRNA-specific primer |
miScript SYBR Green PCR kit | Qiagen | 218073 | Experimental kit for real-time PCR |
QIA shredder | Qiagen | 79654 | biopolymer-shredding spin column |
QuantStudio 12K Flex Flex Real-Time PCR system | Thermo Fisher Scientific | 4472380 | real-time PCR instrument |
QuantStudio 12K Flex Software version 1.2.1. | Thermo Fisher Scientific | 4472380 | real-time PCR instrument software |
takara biomasher standard | Takara Bio | 9790B | silicon homogenizer |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved