Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes tubulin purification from small/medium-scale sources such as cultured cells or single mouse brains, using polymerization and depolymerization cycles. The purified tubulin is enriched in specific isotypes or has specific posttranslational modifications and can be used in in vitro reconstitution assays to study microtubule dynamics and interactions.

Abstract

One important aspect of studies of the microtubule cytoskeleton is the investigation of microtubule behavior in in vitro reconstitution experiments. They allow the analysis of the intrinsic properties of microtubules, such as dynamics, and their interactions with microtubule-associated proteins (MAPs). The “tubulin code” is an emerging concept that points to different tubulin isotypes and various posttranslational modifications (PTMs) as regulators of microtubule properties and functions. To explore the molecular mechanisms of the tubulin code, it is crucial to perform in vitro reconstitution experiments using purified tubulin with specific isotypes and PTMs.

To date, this was technically challenging as brain tubulin, which is widely used in in vitro experiments, harbors many PTMs and has a defined isotype composition. Hence, we developed this protocol to purify tubulin from different sources and with different isotype compositions and controlled PTMs, using the classical approach of polymerization and depolymerization cycles. Compared to existing methods based on affinity purification, this approach yields pure, polymerization-competent tubulin, as tubulin resistant to polymerization or depolymerization is discarded during the successive purification steps.

We describe the purification of tubulin from cell lines, grown either in suspension or as adherent cultures, and from single mouse brains. The method first describes the generation of cell mass in both suspension and adherent settings, the lysis step, followed by the successive stages of tubulin purification by polymerization-depolymerization cycles. Our method yields tubulin that can be used in experiments addressing the impact of the tubulin code on the intrinsic properties of microtubules and microtubule interactions with associated proteins.

Introduction

Microtubules play critical roles in many cellular processes. They give cells their shape, build meiotic and mitotic spindles for chromosome segregation, and serve as tracks for intracellular transport. To perform these diverse functions, microtubules organize themselves in different ways. One of the intriguing questions in the field is to understand the molecular mechanisms that allow the structurally and evolutionarily conserved microtubules to adapt to this plethora of organizations and functions. One potential mechanism is the diversification of microtubules, which is defined by the concept known as the ‘tubulin code’1,

Protocol

Animal care and use for this study were performed in accordance with the recommendations of the European Community (2010/63/UE). Experimental procedures were specifically approved by the ethics committee of the Institut Curie CEEA-IC #118 (authorization no. 04395.03 given by National Authority) in compliance with the international guidelines.

1. Preparation of Reagents for Tubulin Purification

NOTE: All the buffers used for tubulin purification should contain potassiu.......

Representative Results

The main goal of this method is to produce high-quality, assembly-competent tubulin in quantities sufficient to perform repeated in vitro experiments with the purified components. Microtubules assembled from this tubulin can be used in reconstitution assays based on the total internal reflection fluorescence (TIRF) microscopy technique with either dynamic or stable microtubules, in experiments testing microtubule dynamics, interactions with MAPs or molecular motors, and force generation by the motors25<.......

Discussion

The method described here provides a platform to rapidly generate high-quality, assembly-competent tubulin in medium-large quantities from cell lines and single mouse brains. It is based on the gold-standard protocol of tubulin purification from bovine brains used in the field for many years16,17. One particular advantage of the approach is the use of suspension cultures of HeLa S3 cells, which, once established, yields large amounts of cells while requiring litt.......

Acknowledgements

This work was supported by the ANR-10-IDEX-0001-02, the LabEx Cell’n’Scale ANR-11-LBX-0038 and the Institut de convergence Q-life ANR-17-CONV-0005. CJ is supported by the Institut Curie, the French National Research Agency (ANR) awards ANR-12-BSV2-0007 and ANR-17-CE13-0021, the Institut National du Cancer (INCA) grant 2014-PL BIO-11-ICR-1, and the Fondation pour la Recherche Medicale (FRM) grant DEQ20170336756. MMM is supported by the Fondation Vaincre Alzheimer grant FR-16055p, and by the France Alzheimer grant AAP SM 2019 n°2023. JAS was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodow....

Materials

NameCompanyCatalog NumberComments
1 M MgCl2 Sigma#M1028
1-L cell culture vesselsTechne F7610 Used for spinner cultures. Never stir the empty spinner bottles. When spinner bottles are in the cell culture incubator, always keep the lateral valves of spinner bottles slightly open to facilitate the equilibration of media with incubator’s atmosphere. After use, fill the spinner bottles immediately with tap water to avoid drying of remaining cells on the bottle walls. Wash the bottles with deionised water, add app 200 ml of deionised water and autoclave. Under a sterile cell culture hood remove the water and allow the bottles to dry completely, still under the hood, for several hours. Never use detergents for cleaning the spinner bottles because any trace amounts of the detergent can be deleterious to the cells.
1.5- and 2-ml tubes
14-ml round-bottom tubes
15-cm-diameter sterile culture dishes
15-ml screw-cap tubes
2-mercaptoethanol Sigma #M31482-mercaptoethanol is toxic and should be used under the hood.
4-(2-aminoethyl)-benzenesulfonyl fluoride Sigma #A8456
40% Acrylamide Bio-Rad #161-0140
5-, 10- 20-ml syringes
5-ml, 10-ml, 25-ml sterile pipettes
50-ml screw-cap tubes
Ammonium persulfate (APS)Sigma#A3678
Anti-alpha-tubulin antibody, 12G10 Developed by J. Frankel and M. Nelson, obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD, and maintained by the University of Iowadilution: 1/500
Anti-glutamylated tubulin antibody, GT335 AdipoGen #AG-20B-0020dilution: 1/20,000
Aprotinin Sigma #A1153
Balance (0.1 – 10 g)
Beckman 1-l polypropylene bottles For collecting spinner cultures
Beckman Avanti J-26 XP centrifugeFor collecting spinner cultures
Biological stirrer Techne MCS-104L Installed in the cell culture incubator (for spinner cultures), 25 rpm for Hela S3 and HEK 293 cells
Bis N,N’-Methylene-Bis-Acrylamide Bio-Rad #161-0201
Blender IKA Ultra-Turrax® For lysing brain tissue, use 5-mm probe, with the machine set at power 6 or 7. Blend the brain tissue 2-3 times for 15 s on ice.
Bovine serum albumin (BSA)Sigma #A7906
Bromophenol blue Sigma #1.08122
Carboxypeptidase A (CPA)Sigma#C9268Concentration: 1.7 U/µl
Cell culture hood
Cell culture incubator set at 37°C, 5% CO2
Dimethyl sulfoxide (DMSO) Sigma #D8418DMSO can enhance cell and skin permeability of other compounds. Avoid contact and use skin and eye protection.
DMEM medium Life Technologies #41965062
DTT, DL-Dithiothreitol Sigma #D9779
EDTAEuromedex#EU0007-C
EGTASigma #E3889
Ethanol absolute Fisher Chemical #E/0650DF/15
Fetal bovine serum (FBS)Sigma #F7524
French pressure cell press Thermo electron corporation #FA-078Awith a #FA-032 cell; for lysing big amounts of cells. Set at medium ratio, and the gauge pressure of 1,000 psi (corresponds to 3,000 psi inside the disruption chamber).
Glycerol VWR Chemicals #24388.295
GlycineSigma#G8898
GTP Sigma #G8877
Heating block Stuart #SBH130D
Hela cells ATCC® CCL-2™
Hela S3 cells ATCCATCC® CCL-2.2™
Hydrochloric acid (HCl )VWR#20252.290
Inverted microscope With fluorescence if cell transfection is to be verified
Isopropanol VWR #20842.298
jetPEIPolyplus #101
JLA-8.1000 rotor For collecting spinner cultures
KOH Sigma #P1767KOH is corrosive and causes burns; use eye and skin protection.
L-Glutamine Life Technologies #25030123
Laboratory centrifuge for 50-ml tubesSigma4-16 K 
Leupeptin Sigma#L2884
Liquid nitrogen 
Micro-pipettes p2.5, p10, p20, p100, p200 and p1000 and corresponding tips
MicropestlesEppendorf#0030 120.973
Mouse brain tissue Animal care and use for this study were performed in accordance with the recommendations of the European Community (2010/63/UE). Experimental procedures were specifically approved by the ethics committee of the Institut Curie CEEA-IC #118 (authorization no. 04395.03 given by National Authority) in compliance with the international guidelines.
Needles 18G X 1 ½” (1.2 X 38 mmTerumo#18G
Needles 20G X 1 ½” (0.9 X 38 mmTerumo#20G
Needles 21G X 4 ¾” (0.8 X 120 mmB.Braun#466 5643
Parafilm
PBS Life Technologies #14190169
Penicillin-Streptomycin Life Technologies #15140130
pH-meter
Phenylmethanesulfonyl fluoride (PMSF)Sigma #P7626PMSF powder is hazardous. Use skin and eye protection when preparing PMSF solutions.
PIPES Sigma #P6757
Pipette-boy
RotorsBeckman 70.1 Ti; TLA-100.3; and TLA 55
SDS-PAGE electrophoresis equipment Bio-Rad #1658001FC
SDS, Sodium dodecyl sulphate VWR #442444HFor preparing Laemmeli buffer 
SDS, Sodium dodecyl sulphate Sigma #L5750For preparing 'TUB' SDS-PAGE gels
Sonicator Branson#101-148-070Used for lysing cells grown as adherent cultures. Use 6.5 mm diameter probe, set the sonicator at “Output control” 1, “Duty cycle” 10% and time depending on the cell type used.
Tabletop centrifuge for 1.5 ml tubesEppendorf5417R 
TEMED, N, N, N′, N′-Tetramethylethylenediamine Sigma#9281
Trichostatin A (TSA)Sigma#T8552
Triton X-100 Sigma #T9284
Trizma base (Tris)Sigma #T1503
Trypsin Life Technologies#15090046
Ultracentrifuge rotors TLA-55, TLA-100.3 and 70.1 Ti rotorsSet at 4°C or 30°C based on the need of the experiment 
Ultracentrifuge tubes Beckman#357448 for using with TLA-55 rotor
Ultracentrifuge tubes Beckman#349622for using with TLA-100.3 rotor
Ultracentrifuge tubes Beckman#355631 for using with 70.1 Ti rotor
UltracentrifugesBeckmanOptima L80-XP (or equivalent) and Optima MAX-XP (or equivalent)Set at 4°C or 30°C based on the need of the experiment 
Vortex mixer
Water bath equipped with floaters or tube holdersSet at 30°C 

References

  1. Verhey, K. J., Gaertig, J. The tubulin code. Cell Cycle. 6 (17), 2152-2160 (2007).
  2. Janke, C. The tubulin code: Molecular components, readout mechanisms, and functions. Journal of Cell Biology. 206 (4), 461-472 (2014....

Explore More Articles

Tubulin PurificationPosttranslational ModificationsIsotypesPolymerization depolymerization CyclesSuspension CulturesAdherent Cell CulturesCell HarvestingLysis BufferPBS EDTA

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved