A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a method for etching text, patterns, and images onto the surface of silica aerogel monoliths in native and dyed form and assembling the aerogels into mosaic designs.
A procedure for aesthetically enhancing silica aerogel monoliths by laser etching and incorporation of dyes is described in this manuscript. Using a rapid supercritical extraction method, large silica aerogel monolith (10 cm x 11 cm x 1.5 cm) can be fabricated in about 10 h. Dyes incorporated into the precursor mixture result in yellow-, pink- and orange-tinged aerogels. Text, patterns, and images can be etched onto the surface (or surfaces) of the aerogel monolith without damaging the bulk structure. The laser engraver can be used to cut shapes from the aerogel and form colorful mosaics.
Silica aerogel is a nanoporous, high surface area, acoustically insulating material with low thermal conductivity that can be used in a range of applications from collecting space dust to building insulation material1,2. When manufactured in monolithic form, silica aerogels are translucent and can be used to make highly insulating windows3,4,5.
Recently, we have demonstrated that it is possible to alter the appearance of a silica aerogel by etching onto or cutting through the surface using ....
Safety glasses or goggles should be worn when preparing the aerogel precursor solutions, working with the hot press, and using the laser engraving system. Laboratory gloves should be worn when cleaning and preparing the mold, preparing the chemical reagent solution, pouring the solution into the mold in the hot press and handling the aerogel. Read Safety Data Sheets (SDS) for all chemicals, including solvents, prior to working with them.Tetramethyl orthosilicate (TMOS), methanol and concentrated ammonia, and solutions co.......
This protocol can be employed to prepare a wide variety of aesthetically pleasing aerogel monoliths for applications including, but not limited to, art and sustainable building design. Inclusion in the precursor mixture of the small amounts of dye employed here is only observed to impact the color of the resulting aerogel monolith; changes in other optical or structural properties are not observed.
Figure 8<.......
This protocol demonstrates how laser etching and the inclusion of dyes can be employed to prepare aesthetically pleasing aerogel materials.
Making large (10 cm x 11 cm x 1.5 cm) aerogel monoliths requires proper mold preparation through sanding, cleaning, and grease application to prevent the aerogel from sticking to the mold and major cracks from forming. The parts of the mold in direct contact with the precursor solution/soon to be formed aerogel are the most critical. Reducing the surface r.......
The authors would like to acknowledge the Union College Faculty Research Fund, Student Research Grant program, and the summer undergraduate research program for financial support of the project. The authors would also like to acknowledge Joana Santos for the design of the three-piece mold, Chris Avanessian for SEM imaging, Ronald Tocci for etching onto the curved aerogel surface, and Dr. Ioannis Michaloudis for inspiration and initial work on the etching project as well as for providing the Kouros image and cylindrical aerogel.
....Name | Company | Catalog Number | Comments |
2000 grit sandpaper | Various | ||
50W Laser Engraver | Epilog Laser | Any laser cutter is suitable | |
Acetone | Fisher Scientific www.fishersci.com | A18-20 | Certified ACS Reagent Grade |
Ammonium Hydroxide (aqueous ammonia) | Fisher Scientific www.fishersci.com | A669S212 | Certified ACS Plus, about 14.8N, 28.0-20.0 w/w% |
Beakers | Purchased from Fisher Scientific | Any glass beaker is suitable. | |
Deionized Water | On tap in house | ||
Digital balance | OHaus Explorer Pro | Any digital balance is suitable. | |
Disposable cleaning wipes | Fisher Scientific www.fishersci.com | 06-666 | KimWipe |
Drawing Software | CorelDraw Graphics Suite | CorelDraw | |
Flexible Graphite Sheet | Phelps Industrial Products | 7500.062.3 | 1/16" thick |
Fluorescein | Sigma Aldrich www.sigmaaldrich.com | F2456 | Dye content ~95% |
Foam paint brush | Various | 1-2 cm size | |
High Vacuum Grease | Dow Corning | ||
Hydraulic Hot Press | Tetrahedron www.tetrahedronassociates.com | MTP-14 | Any hot press with temperature and force control will work. Needs maximum temperature of ~550 F and maximum force of 24 tons. |
Laser Engraver | Epilogue Laser | Helix - 24 | 50 W |
Methanol (MeOH) | Fisher Scientific www.fishersci.com | A412-20 | Certified ACS Reagent Grade, ≥99.8% |
Mold | Fabricated in House | Fabricate from cold-rolled steel or stainless steel. | |
Paraffin Film | Fisher Scientific www.fishersci.com | S37441 | Parafilm M Laboratory Film |
Rhodamine-6G Rhodamine-6g FlouresceinRhodamine-6g | Sigma Aldrich www.sigmaaldrich.com | 20,132-4 | Dye content ~95% |
Rhodamine-B Rhodamine-6g FlouresceinRhodamine-6g | Sigma Aldrich www.sigmaaldrich.com | R-953 | Dye content ~80% |
Soap to clean mold | Various | ||
Stainless Steel Foil | Various | .0005" thick, 304 Stainless Steel | |
Tetramethylorthosilicate (TMOS) | Sigma Aldrich www.sigmaaldrich.com | 218472-500G | 98% purity, CAS 681-84-5 |
Ultrasonic Cleaner | FisherScientific FS6 | 153356 | Any sonicator is suitable. |
Vacuum Exhaust system | Purex | 800i | Any exhaust system is suitable. |
Variable micropipettor, 100-1000 µL | Manufactured by Eppendorf, purchased from Fisher Scientific www.fishersci.com | S304665 | Any 100-1000 µL pipettor is suitable. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved