Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

In this study, we describe the process of T lymphocyte isolation from fresh samples of calcified aortic valves and the analytical steps of T cell-cloning for the characterization of the adaptive leukocyte subsets by using flow cytometry analysis.

Abstract

Calcific aortic valve disease (CAVD), an active disease process ranging from mild thickening of the valve to severe calcification, is associated with high mortality, despite new therapeutic options such as transcatheter aortic valve replacement (TAVR).

The complete pathways that start with valve calcification and lead to severe aortic stenosis remain only partly understood. By providing a close representation of the aortic valve cells in vivo, the assaying of T lymphocytes from stenotic valve tissue could be an efficient way to clarify their role in the development of calcification. After surgical excision, the fresh aortic valve sample is dissected in small pieces and the T lymphocytes are cultured, cloned then analyzed using fluorescence activated cell sorting (FACS).

The staining procedure is simple and the stained tubes can also be fixed using 0.5% of paraformaldehyde and analyzed up to 15 days later. The results generated from the staining panel can be used to track changes in T cell concentrations over time in relation to intervention and could easily be further developed to assess activation states of specific T cell subtypes of interest. In this study, we show the isolation of T cells, performed on fresh calcified aortic valve samples and the steps of analyzing T cell clones using flow cytometry to further understand the role of adaptive immunity in CAVD pathophysiology.

Introduction

Calcific aortic valve disease (CAVD) is one of the most common heart valve disorders, with a heavy impact on healthcare. The frequency of aortic valve replacement in the last years has increased dramatically and is expected to increase further, due to the growing elderly population1.

The underlying pathophysiology of CAVD is only partially known and the current therapeutic strategies are limited to conservative measures or aortic valve replacement, either through surgical or percutaneous procedures. To date, no effective medical treatment can hinder or reverse CAVD progression and high mortality is associated with ea....

Protocol

The study was conducted according to the Statute of the Charité for Ensuring Good Scientific Practice and the legal guidelines and provisions on privacy and ethics were respected. The Ethics Committee approved all human experiments and the privacy and anonymity of the patients were maintained in accordance with the rules reported on the Ethic Form.

NOTE: For the protocol described below fresh human stenotic valve samples were used.

1. Reagent preparation

    .......

Representative Results

We used a simple and cost-effective method to characterize the leukocyte population of fresh aortic valve samples derived from human patients with severe aortic valve stenosis (refer to protocol). The method for isolating PBMCs is a vital step in obtaining feeder cells, which are used in every step of the experiment (cloning, refeeding and splitting phases) and enable the detection and characterization of infiltrating leukocytes in aortic valve samples. The key steps of this method are shown in Figur.......

Discussion

Here we present a method to characterize T lymphocyte subpopulations isolated from stenotic aortic valve samples, using flow cytometry. This method requires the use of irradiated buffy coat to isolate the PBMCs. The radiation frequency to which the buffy coat bags must be subjected is 9000 Rad/90 Gray (Gy) and it represents a crucial step to halt the proliferation of the feeder cells. The role of the cells isolated from the buffy coat bags is to act only as feeder cells and provide nutrients for the T cells isolated from.......

Acknowledgements

All the buffy coat bags used for this protocol were irradiated thanks to availability of Dr. Peter Rosenthal, Dr. Dirk Böhmer and the whole team of the Radiology Department of Charité Benjamin Franklin. Scholarship Holder/Mary Roxana Christopher, this work is supported by a scholarship from the German Cardiac Society (DGK).

....

Materials

NameCompanyCatalog NumberComments
50 mL plastic syringesFisherbrand9000701
96- well U- bottom Multiwell platesGreiner Bio-One10638441
Bag Spike (needle free)SigmaP6148Dilute to 4% with PBS
CD14 Brilliant violet 421 Biolegend560349
CD25 PE Biolegend302621
CD3 PE/Cy7 Biolegend300316
CD4 Alexa Fluor 488 Biolegend317419
CD45 Brilliant violet 711 Biolegend304137
CD8 Brilliant violet 510 Biolegend301047
Eppendorf tube 1.5 mLEppendorf13094697
Eppendorf tube 0.5 mLThermo ScientificAB0533
Falcon 15 mL conical centrifuge tubeFalcon10136120
Falcon 50 mL conical centrifuge tubesFalcon10788561
Falcon Round-Bottom Polystyrene TubesBD2300E
Fast read 102 plastic counting chamberKOVA INTERNATIONAL630-1893
Filters for culture medium 250 mLNalgeneThermo Fisher Scientific168-0045
Filters for culture medium 500 mLNalgeneThermo Fisher Scientific166-0045
HB 101 Lyophilized SupplementIrvine ScientificT151
HB Basal MediumIrvine ScientificT000
Heat-Inactivated FBS (Fetal Bovine Serum)EurocloneECS0180L
HS (Human serum)Sigma AldrichH3667
Human IL-2 ISMiltenyi Biotec130-097-744
L-GlutamineGibco11140050
LymphoprepFalcon352057
Non-essential amino acids solutionSigma11082132001
ParaformaldehydeThermo Fisher Scientific10538931
PBS (Phosphate-buffered saline)Thermo Fisher Scientific10010023
Penicillin/StreptomycinGibco1507006310000 U/mL
PHA (phytohemagglutinin)Stem Cell Technologies7811
Plastic Petri dishesThermo ScientificR80115TS10 0mm x 15 mm
RPMI 1640 MediaHyClone15-040-CV
Sodium pyruvateGibco by Life technologies11360070
Syringe Filters 0,45µlRotilabo-SpritzenfilterP667.1
T-25 Cell culture flasksInvitrogenThermo Fisher ScientificAM9625
T-75 Cell culture flaskThermo Fisher Scientific10232771
β- MercaptoethanolGibcoA2916801

References

  1. Nkomo, V. T., et al. Burden of valvular heart diseases: a population-based study. Lancet. 368 (9540), 1005-1011 (2006).
  2. Clavel, M. A., et al. Imp....

Explore More Articles

T LymphocytesAortic Valve CalcificationFeeder CellsDensity Gradient CentrifugationCell CulturePBMC IsolationIL 2T cell CloningT cell CultureU bottom 96 well Plates

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved