JoVE Logo
Faculty Resource Center

Sign In

Abstract

Neuroscience

Establishment of a Rat Model of Superior Sagittal-Sinus Occlusion via a Thread-Embolism Method

Published: July 4th, 2021

DOI:

10.3791/62118

1Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 2Rehabilitation Department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, 3Department of Neurosurgery, the Hospital of Changle, 4Pediatrics Ward 2, Shouguang Hospital of Traditional Chinese Medicine, 5Fujian University of Traditional Chinese Medicine, 6National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 7Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, 8Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University
* These authors contributed equally

The mechanisms contributing to the natural onset of cerebral venous sinus thrombosis (CVST) are mostly unknown, and a variety of uncontrollable factors are involved in the course of the disease, resulting in great limitations in clinical research. Therefore, the establishment of stable CVST animal models that can standardize a variety of uncontrollable confounding factors have helped to circumvent shortcomings in clinical research. In recent decades, a variety of CVST animal models have been constructed, but the results based on these models have been inconsistent and incomplete. Hence, in order to further explore the pathophysiological mechanisms of CVST, it is necessary to establish a novel and highly compatible animal model, which has important practical value and scientific significance for the diagnosis and treatment of CVST. In the present study, a novel Sprague-Dawley (SD) rat model of superior sagittal sinus (SSS) thrombosis was established via a thread-embolization method, and the stability and reliability of the model were verified. Additionally, we evaluated changes in cerebral venous blood flow in rats after the formation of CVST. Collectively, the SD-rat SSS-thrombosis model represents a novel CVST animal model that is easily established, minimizes trauma, yields good stability, and allows for accurately controlling ischemic timing and location.

Tags

Keywords Rat Model

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved