JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Establishment of a Rat Model of Superior Sagittal-Sinus Occlusion via a Thread-Embolism Method

Published: July 4th, 2021

DOI:

10.3791/62118

1Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 2Rehabilitation Department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, 3Department of Neurosurgery, the Hospital of Changle, 4Pediatrics Ward 2, Shouguang Hospital of Traditional Chinese Medicine, 5Fujian University of Traditional Chinese Medicine, 6National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 7Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, 8Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University
* These authors contributed equally

Here, we establish a novel Sprague-Dawley (SD) rat model of superior sagittal sinus (SSS) thrombosis via a thread-embolization method, and the stability and reliability of the model were verified.

The mechanisms contributing to the natural onset of cerebral venous sinus thrombosis (CVST) are mostly unknown, and a variety of uncontrollable factors are involved in the course of the disease, resulting in great limitations in clinical research. Therefore, the establishment of stable CVST animal models that can standardize a variety of uncontrollable confounding factors have helped to circumvent shortcomings in clinical research. In recent decades, a variety of CVST animal models have been constructed, but the results based on these models have been inconsistent and incomplete. Hence, in order to further explore the pathophysiological mechanisms of CVST, it is necessary to establish a novel and highly compatible animal model, which has important practical value and scientific significance for the diagnosis and treatment of CVST. In the present study, a novel Sprague-Dawley (SD) rat model of superior sagittal sinus (SSS) thrombosis was established via a thread-embolization method, and the stability and reliability of the model were verified. Additionally, we evaluated changes in cerebral venous blood flow in rats after the formation of CVST. Collectively, the SD-rat SSS-thrombosis model represents a novel CVST animal model that is easily established, minimizes trauma, yields good stability, and allows for accurately controlling ischemic timing and location.

Cerebral venous sinus thrombosis (CVST) is a rare disease of the cerebral venous system that accounts for only 0.5-1.0% of all causes of stroke but has a relatively high occurrence rate in children and young adults1. During autopsy, CVST was found to be the cause of 10% of cerebrovascular disease deaths2. Thrombosis can occur in any part of the intracranial venous system. The superior sagittal sinus (SSS) is one of the most commonly affected areas in CVST and can involve multiple blood vessels. Owing to stenosis or occlusion of the venous sinuses, intracranial venous return is blocked, which is often accompanied by incre....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Procedures involving animal subjects have been approved by the Medical Norms and Ethics Committee of Wenzhou Medical University and are in accordance with the China legislation on the use and care of laboratory animals.

1. Preparation of the thread plug, SD rats, and experimental equipment

  1. Use a nylon thread with a diameter of 0.28 mm as the main body of the thread plug.
    NOTE: The softness and hardness of the nylon thread should be moderate.
  2. Cover one end of the ny.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To establish the SD-rat SSS-thrombosis model via the suture method, the suture should be prepared in advance (Figure 1A), and the equipment required for the experiment (Figure 1B) should be prepared. Due to the delicate nature of the operation, the preparation of the model needs to be completed under a dissecting microscope. The main steps are shown in Figure 2. To facilitate the description of the specific details of the blood-flow.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this study, a new type of CVST model was successfully established by inserting a self-made thread plug into the SSS of SD rats. Additionally, laser-speckle blood-flow imaging and small-animal MRI were combined to monitor changes in blood flow on the brain surface of SD rats before and after the embolization in order to standardize ischemic timing and location.

In 1989, Longa et al. made a reversible MCA occlusion model by retrogradely inserting a self-made nylon suture into the external car.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This study was supported by grant Scientific Research Foundation for the High-level Talents, Fujian University of Traditional Chinese Medicine (X2019002-talents).

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
2 mL syringe Becton,Dickinson and Company 301940
brain stereotaxic instrument Shenzhen RWD Life Technology Co., Ltd 68025
dissecting microscope Wuhan SIM Opto-technology Co. SIM BFI-HR PRO
high-speed skull drill Shenzhen RWD Life Technology Co., Ltd 78046
laser-speckle blood-flow imaging system Wuhan SIM Opto-technology Co. SIM BFI-HR PRO
needle holder Shenzhen RWD Life Technology Co., Ltd F31022-12
needle thread Shenzhen RWD Life Technology Co., Ltd F33303-08
scissors Shenzhen RWD Life Technology Co., Ltd S13029-14
silica gel Heraeus Kulzer 302785
small animal anesthesia machine Shenzhen RWD Life Technology Co., Ltd R540
small-animal MRI Bruker Medical GmbH Biospec 94/30 USR
tweezers Shenzhen RWD Life Technology Co., Ltd F11029-11
vascular forceps Shenzhen RWD Life Technology Co., Ltd F22003-09

  1. Bousser, M. G., Ferro, J. M. Cerebral venous thrombosis: an update. Lancet Neurology. 6 (2), 162-170 (2007).
  2. Guenther, G., Arauz, A. Cerebral venous thrombosis: A diagnostic and treatment update. Neurologia. 26 (8), 488-498 (2011).
  3. Stam, J. Thrombosis of the cerebral veins and sinuses. New England Journal of Medicine. 352 (17), 1791-1798 (2005).
  4. Einhäupl, K., et al. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. European Journal of Neurology. 17 (10), 1229-1235 (2010).
  5. Coutinho, J. M., Zuurbier, S. M., Stam, J. Declining mortality in cerebral venous thrombosis: a systematic review. Stroke. 45 (5), 1338-1341 (2014).
  6. Gotoh, M., Ohmoto, T., Kuyama, H. Experimental study of venous circulatory disturbance by dural sinus occlusion. Acta Neurochir (Wien). 124 (2-4), 120-126 (1993).
  7. Miyamoto, K., Heimann, A., Kempski, O. Microcirculatory alterations in a mongolian gerbil sinus-vein thrombosis model. Journal of Clinical Neuroscience. 8 (4), (2001).
  8. Ungersböck, K., Heimann, A., Kempski, a. O. Cerebral Blood Flow Alterations in a Rat Model of Cerebral Sinus Thrombosis. Stroke. 24 (4), (1993).
  9. Röttger, C., et al. A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery. 57 (3), 573-580 (2005).
  10. Chen, C., et al. Photothrombosis combined with thrombin injection establishes a rat model of cerebral venous sinus thrombosis. Neuroscience. 306, 39-49 (2015).
  11. Yang, H., Meng, Z., Zhang, C., Zhang, P., Wang, Q. Establishing a new rat model of central venous sinus thrombosis and analyzing its pathophysiological and apoptotic changes. Journal of Neuroscience Methods. 203 (1), 130-135 (2012).
  12. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  13. Fluri, F., Schuhmann, M. K., Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Design, Development and Therapy. 9, 3445-3454 (2015).
  14. Wang, E., et al. Mapping tissue pH in an experimental model of acute stroke - Determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. Neuroimage. 191, (2019).
  15. Liu, C., et al. Identification of Vigilin as a Potential Ischemia Biomarker by Brain Slice-Based Systematic Evolution of Ligands by Exponential Enrichment. Analytical Chemistry. 91 (10), 6675-6681 (2019).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved