JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Biochemistry

In vitro Monitoring of Extracellular pH in Real-Time

Published: June 3rd, 2021

DOI:

10.3791/62169

1Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, 2Department of Medicine, University of Colorado Anschutz Medical Campus, 3Rocky Mountain Regional Veterans Affairs Medical Center

This article represents a useful in vitro assay to measure changes in extracellular pH during neutrophil (PMN) transepithelial migration (TEM)

Early accumulation of neutrophils (PMN) is a hallmark of acute intestinal inflammation. This acute inflammation is either resolved or progresses to chronic inflammation. Without efficient PMN clearance at sites of infiltration, PMN can accumulate and contribute to chronic inflammatory conditions, including the intestinal diseases ulcerative colitis (UC) and Crohn's Disease (CD). The pH in the distal colon in individuals with active UC can range between a pH of 5 and 6, whereas healthy individuals maintain colonic pH in the range of 6.8-7.4. Extracellular pH has been shown to influence both intestinal epithelial cells and the infiltrating immune cells. More specifically, extracellular acidosis significantly impacts PMN. At pH below 6.5, there are increases in the production of H2O2, inhibition of apoptosis, and increases in the functional lifespan of PMN. Given the significant presence of PMN and extracellular acidification at sites of inflammation, we developed a novel model that allows for the monitoring of extracellular pH during PMN transepithelial migration in real time. Here, we describe this model and how it can be utilized to measure both the apical and basal pH during PMN trafficking. This model can be utilized to monitor extracellular pH under a wide range of conditions; including, hypoxia, PMN transepithelial migration, and for extended periods of time.

The extracellular microenvironment has been shown to play a significant role in modulating the inflammatory response. One aspect of the microenvironment which is often underappreciated is extracellular acidification. Extracellular acidification is often observed at sites of active inflammation, including mucosal disorders such as inflammatory bowel diseases. The luminal pH in the distal colon from patients with UC can range between a pH of 5 and 6, whereas healthy individuals have colonic pH's in the range of 6.8-7.41,2. This decrease in colonic pH is of particular interest because extracellular pH has been sh....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Cell Preparation

Day 1

  1. Warm cell culture media (DMEM/F12 with 5% FBS, 2 mM L-alanyl-L-glutamine dipeptide, and Pen Strep) in a 37 °C water bath for 20 min.
  2. Prepare the tissue culture hood by spraying it with 70% ethanol and wiping down the surfaces with paper towels.
  3. Spray and wipe tissue culture flasks and media, PBS, and trypsin bottles with 70% ethanol and bring them into the tissue culture hood.
  4. Aspirate the media from the cell culture flas.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The results are usually via line graph to show change in pH over time (example shown in Figure 3A) or as a scatter plot showing extracellular pH at a single point in time (example shown in Figure 3B). Depending on experimental need, additional controls and treatments can be included. Additionally, this assay can be modified to monitor extracellular under a wide range of conditions. For example, the SDR reader can be placed in a hypoxic chamber and the extracellu.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In this protocol, there are several key steps. Monolayers should be confluent, but not overconfluent. For T84 IEC, they should be used 7-10 days after plating. Human and murine enteroids grow at different rates than T84 IEC and the researchers should determine how long it takes each line to reach confluency. It is important that the researchers need to use minimally buffered media to ensure shifts in extracellular pH are observed. HBSS+ contains glucose and is suitable for experiments shorter than 12 h. T84 IEC incubated.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NA

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
10 mL serological pipettes Corning 4101
24-well plate Corning CLS3527-100EA
5 mm pore inserts Corning 3421
50 ml sterile conical tube Corning 0553855A
75 cm2 flask Corning 430641U
DMEM/F12 Gibco 10565-018
FBS Gibco 26140
GlutaMax ThermoFisher 35050061
HBSS- Sigma-Aldrich H4891-10X1L
HBSS+ Sigma-Aldrich H1387-10L
Histopaque T1077 Sigma-Aldrich 10771-6X100ML
Histopaque T1119 Sigma-Aldrich 11191-6X100ML
HydroDish HD24 PreSens NA https://www.presens.de/products/detail/hydrodish-hd24
PBS Gibco 14190-144
Pen Strep Gibco 15140-122
RBC lysis buffer ThermoFisher 00-4333-57
SDR Reader PreSens NA https://www.presens.de/products/detail/sdr-sensordish-reader-basic-set
Trypsin Fisher Scientific 25200114

  1. Roediger, W. E., Lawson, M. J., Kwok, V., Grant, A. K., Pannall, P. R. Colonic bicarbonate output as a test of disease activity in ulcerative colitis. Journal of Clinical Pathology. 37 (6), 704-707 (1984).
  2. Nugent, S. G., Kumar, D., Rampton, D. S., Evans, D. F. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 48 (4), 571-577 (2001).
  3. Trevani, A. S., et al. Extracellular acidification induces human neutrophil activation. Journal of Immunology. 162 (8), 4849-4857 (1999).
  4. Cao, S., et al. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions. PLoS One. 10 (9), 0137221 (2015).
  5. Schweinfest, C. W., Henderson, K. W., Suster, S., Kondoh, N., Papas, T. S. Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proceedings of the National Academy of Sciences of the United States of America. 90 (9), 4166-4170 (1993).
  6. Schweinfest, C. W., et al. slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. Journal of Biological Chemistry. 281 (49), 37962-37971 (2006).
  7. Cartwright, I. M., et al. Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunology. 13 (2), 230-244 (2020).
  8. Pucino, V., Bombardieri, M., Pitzalis, C., Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. European Journal of Immunology. 47 (1), 14-21 (2017).
  9. Ozkan, P., Mutharasan, R. A rapid method for measuring intracellular pH using BCECF-AM. Biochimica et Biophysica Acta. 1572 (1), 143-148 (2002).
  10. Naciri, M., Kuystermans, D., Al-Rubeai, M. Monitoring pH and dissolved oxygen in mammalian cell culture using optical sensors. Cytotechnology. 57 (3), 245-250 (2008).
  11. Campbell, E. L., et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity. 40 (1), 66-77 (2014).
  12. Abaci, H. E., Truitt, R., Luong, E., Drazer, G., Gerecht, S. Adaptation to oxygen deprivation in cultures of human pluripotent stem cells, endothelial progenitor cells, and umbilical vein endothelial cells. American Journal of Physiology-Cell Physiology. 298 (6), 1527-1537 (2010).
  13. Braverman, J., Yilmaz, O. H. From 3D Organoids back to 2D Enteroids. Developmental Cell. 44 (5), 533-534 (2018).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved